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Summary
• We propose a new derivative-free algorithm based on Bayesian

optimisation and particle filters.

• Enables estimation of parameters in general state space models.

• Parameter estimates close to the true values are obtained using

only 150 samples from the log-likelihood.

Frequentistic parameter inference
We are interested in solving the parameter inference problem in

nonlinear state space models

xt+1|xt ∼ fθ(xt+1|xt),
yt|xt ∼ hθ(yt|xt),

given a set of observations DT = {yt}Tt=1 and where θ ∈ Θ ⊆ Rd denotes

static parameters. The maximum likelihood estimate is given by

θ̂ML = argmax
θ

log p(DT |θ),

where log p(DT |θ) denotes the (often) intractable log-likelihood function.

Particle Bayesian optimisation
In Bayesian optimisation, we iteratively optimise a surrogate func-

tion f (θ) modelled as a Gaussian process by a three step procedure.

Update the GP
in (2) with the

iterate {θk, ̂̀k}.

Select θk using (3).

Run the PF to
sample ̂̀k by (1).
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Figure: An iteration of the Particle Bayesian optimisation algorithm.

Main idea
Explore the likelihood landscape using a combination of parti-

cle filtering and Gaussian process models. New parameters are

sampled according to the expected improvement of the model.

Estimating the likelihood
We run a particle filter (PF) targeting pθk(xt|Dt), which returns the

unnormalised particle system {x(i)
t , w

(i)
t|t}

N
i=1. The log-likelihood can then

be estimated using

̂̀
k = log p̂(Dt|θk) =

T∑
t=1

log

 N∑
i=1

w
(i)
t|t

 . (1)

The resulting pair {θk, ̂̀k}mk=1 denotes the iterates of the algorithm.

Gaussian process model
The surrogate function in this optimisation is modelled as

f (θ) ∼ GP (m(θ), k(θ, θ′)) , (2)

with a constant mean function, m(θ), and the Matérn covariance func-

tion, k(θ, θ′), with ν = 3/2. The mean and variance of the model

µ(θ) = E[f (θ)|{θk, ̂̀k}mk=1],

σ2(θ) = V[f (θ)|{θk, ̂̀k}mk=1],

are updated recursively using standard results.

Acquisition rule
The next point in which to sample p(DT |θ) is determined by the max-

imising argument of the expected improvement defined as

EI(θ) =

[
µ(θ)−max

θ
µ(θ)− ξ

]
Φ(Z) + σ(θ)φ(Z), with (3)

Z =
1

σ(θ)

[
µ(θ)−max

θ
µ(θ)− ξ

]
,

where ξ denotes a coefficient that balances exploration and exploitation.

Here, Φ and φ denote the CDF and PDF of the Gaussian distribution.

Example: Linear Gaussian model

xt+1|xt ∼ N
(
xt+1; θ1xt, θ

2
2

)
,

yt|xt ∼ N
(
yt;xt, 0.1

2
)
,

with true parameters θ? = {θ?1, θ?2} = {0.5, 1.0}. We use T = 2 000 time

steps, N = 2 000 particles and M = 150 iterations.
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Kalman filter

θ1

θ
2

−1.0 −0.5 0.0 0.5 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

*

Bayesian optimisation

Example: Stochastic volatility model

xt+1|xt ∼ N
(
xt+1; θ1xt, θ

2
2

)
,

yt|xt ∼ N
(
yt; 0, 0.652 exp(xt)

)
,

with θ? = {θ?1, θ?2} = {0.98, 0.16} and the same settings as before.
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More information and source code
http://users.isy.liu.se/rt/johda87/

http://www.control.isy.liu.se/†{johan.dahlin,lindsten}@isy.liu.se


