Bayesian Optimisation for Parameter

Johan DahlinT and Fredrik Lindsten?

Inference

AUTOMATIC CONTROL
REGLERTEKNIK
LINKOPINGS UNIVERSITET

Summary

e We propose a new derivative-free algorithm based on Bayesian
optimisation and particle filters.

e [nables estimation of parameters in general state space models.

e Parameter estimates close to the true values are obtained using
only 150 samples from the log-likelihood.

Frequentistic parameter inference

We are interested in solving the parameter inference problem in

nonlinear state space models

Li4+1|Tt ™~ f@($t+1|xt)a

Yelxr ~ ho(ye| ),

given a set of observations Dy = {y; }._, and where § € © C R? denotes

static parameters. The maximum likelihood estimate is given by

é\ML = argmax log p(Drlf),
0

where log p(Dr|f) denotes the (often) intractable log-likelihood function.

Particle Bayesian optimisation

In Bayesian optimisation, we iteratively optimise a surrogate func-

tion f(#) modelled as a Gaussian process by a three step procedure.

Select ;. using (3).

Update the GP
in (2) with the
iterate {9/{7 fk}

Run the PF to
sample ¢;. by (1).

Figure: An iteration of the Particle Bayesian optimisation algorithm.
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Main idea
Explore the likelihood landscape using a combination of parti-

cle filtering and Gaussian process models. New parameters are
sampled according to the expected improvement of the model.

Estimating the likelihood

We run a particle filter (PF) targeting pg, (¢|D;), which returns the
unnormalised particle system {x?, wﬁ@}f\il The log-likelihood can then

be estimated using

T N l
by =log p(Di|0) = log | Y wy)| . (1)
t=1 1=1

The resulting pair {6y, Zk}?’:l denotes the iterates of the algorithm.

Gaussian process model

The surrogate function in this optimisation is modelled as
f(8) ~GP (m(0),k(6,6)) (2)

with a constant mean function, m(#), and the Matérn covariance func-
tion, k(6,60"), with v = 3/2. The mean and variance of the model

u(8) = ELf(6) {0, Li}ita)
o(0) = VIf(0)|{0k, tr }i 1],

are updated recursively using standard results.

Acquisition rule

The next point in which to sample p(Dyr|0) is determined by the max-

imising argument of the expected improvement defined as

S1(6) = | p(6) — max u(0) — €| B(2) + 0(0)9(2), with  (3)

R |

Z = @ _M(Q) - mgxxu(ﬁ) - f_ :

where & denotes a coefficient that balances exploration and exploitation.
Here, ® and ¢ denote the CDF and PDF of the GGaussian distribution.

Example: Linear Gaussian model

Tipi|ze ~ N ($t+1; 014, 93) ;
yeloy ~ N (yt; Lt, 0-12) :

with true parameters 8* = {07,0} = {0.5,1.0}. We use T" = 2000 time
steps, NV = 2000 particles and M = 150 1terations.
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Example: Stochastic volatility model

Tep1|ee ~ N ($t+1; Ohxy, 93) ;
yiley ~ N (yt; 0,0.65° exp(xt)) ,

with 6% = {07,605} = {0.98,0.16} and the same settings as before.
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More information and source code
http://users.isy.liu.se/rt/johda87/

http://www.control.isy.liu.se/



