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Abstract

Earlier agent-based models simulate Double Auction (DA)-markets
by using trading periods, each lasting until all agents have traded a
certain amount of commodity. In real-world markets, agents are en-
tering and exiting at random thus changing the amount of tradable
commodity. In this paper we therefore study the effects of removing
trading periods from earlier proposed agent-based models. We present
a method of removing trading periods from DA-markets by introduc-
ing storage and production. The resulting transaction price series is
shown to have closer resemblance to price series found in real-world
markets, than previous models with trading periods. The effects of
storage on markets populated by machine agents are also studied. We
present results showing that the Zero-Intelligence Plus agents (ZI-P)
performs poorly even with very small storage fees. Finally we show
how a simple modification of the ZI-P agents results in a significant
better performance on markets with storage costs.
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1 Introduction

Pricing is a subject of everyday importance; individuals, producers and other
economic agents engages daily in bargaining and price setting. Usually this
subject is studied using the concept of perfectly competitive markets1, assum-
ing fully rational economic agents in an equilibrium environment. Recently
the requirement of rational agents have been challenged by studies of mar-
kets populated by machine agents, equipped with none or little intelligence.
Simulations of such artificial markets yields adjustment patterns to the equi-
librium price with obvious resemblance experiments of markets populated
by human agents. These studies raise the question of how much rational-
ity is needed for the market price to converge to the Walrasian equilibrium
price. Perhaps the complex real-world market may be explained by a simpler
mechanism, that relaxes the assumption of fully rational economic agents.

The Walrasian equilibrium price is guaranteed existence by a large num-
ber of assumptions. Including that the market contains some amount of trad-
able commodity some period and a large number of active economic agents.
In addition, the Walrasian price is derived assuming no additional friction,
i.e. no asymmetric information and transaction costs. These assumptions
are far from the real world markets that often experience different kinds
of information problems and problems with few sellers and many buyers.
Studies of pricing without these strict assumptions are therefore important
for understanding these markets. Attempts to soften the assumptions of the
Walrasian equilibrium model has resulted in impracticable models and there-
fore no complete theoretical model exists of real-world markets. This have
motivated the use of less traditional economic methods, such as agent-based
computational economics2.

Agent-based modelling3 has long been used in the fields of mathematics,
physics and biology to model the emergent properties of a system by us-
ing small agents. The main thought behind the method is the use of many
agents, which (in general) are quite simple constructs, that interact using

1For a thorough presentation of perfectly competitive markets and the Walrasian the-
ory, see Mas-Colell et al. (1995). More accessible introductory presentations are found in
Varian (2006) and Gravelle and Rees (2004).

2For motivation for the use of agent-based methods in economics and discussions on
the difficulties in using the Walrasian model in real-world markets, see Tesfatsion (2006).

3An accessible introduction to the use of agent-based modelling in the Social Science
is found in Gilbert (2007).
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some rules and creates some emergent macroscopic behaviour. This corre-
sponds quite well with the structure of the connection between microeco-
nomics and macroeconomics, where the interactions between the small parts
of the economy aggregated creates macroeconomic phenomenon. The main
advantage of agent-based modelling is the ability to study dynamic system
behaviour and therefore analyse non-equilibrium situations in economics. A
drawback is the difficulty in finding the simple rules/behaviours of agents
that creates the desired emergent properties.

Previous studies have shown that the Walrasian equilibrium price may be
found by using Double Auction(DA)-markets populated by machine agents.
In a DA-market, sellers and buyers are able to submit offer and bid prices
to a central auctioneer which announces a trade if a bid and offer price
intersects. In this paper, we will use machine agents and DA-markets to
study more complex markets then previously done. We will generalize the
previous studies by removing trading periods4 using production and storage
(with/without a storage fee).

The subject of studying the competitive market with experiments was
first introduced by Smith (1962). The author investigates the hypotheses of
Walrasian competitive market theory by the use of human agents in mar-
ket experiments. The conclusion of the experiments was that human agents
quickly find the theoretical equilibrium price, for a range of different sets of
demand and supply functions. Gode and Sunder (1993) continued the work
of Smith in a simulation-based setting5, replacing humans agents with simple
computer-based agents submitting random bids and offers. The hypothesis
was that the actions of these irrational Zero-Intelligent agents (ZI) would
create an aggregated competitive market with high performance6. The main
conclusion of the study was that the Walrasian equilibrium price was found
by simple machine agents (with no reasoning, learning or adaptability) pop-
ulating a DA-market7. The work of Gode and Sunder (1993) was heavily

4Earlier studies have allowed agents to trade a number of units of commodity during a
trading period. Each period lasts until all agents have traded all units at their disposal.
After each trading period all agents are given the same amount of units to trade and the
simulation is continued.

5For a discussion of the use of machine agents in market experiments, see Duffy (2006).
6The market performance measure used by Gode and Sunder (1993) is the part of the

total possible profit (the sum of the consumer and producer surpluses) that the agents
manages to extract in trading. As discussed by Becker (1962) the use of a simple rule (the
budget restriction) would generate an effective market.

7This work is also discussed and analysed in Brewer et al. (2002).
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criticized by Cliff et al. (1997). They demonstrated that the convergence
towards the theoretical equilibrium price was the result of market symmetry.
This was verified by simulations on asymmetric markets where the ZI-agents
preformed poorly (converging to the calculated incorrect price and not to
the theoretical correct price). To resolve this problem, Cliff et al. (1997)
introduced some adaptability to the ZI-agent and named these ZI-P agents.
The use of ZI-P agents resulting in the transactional prices more similar to
observed prices from markets with human agents.

This paper continues the work of Gode and Sunder (1993) and Cliff et al.
(1997) by removing trading periods and suggesting a future improvement
of the ZI-P agents to handle markets with storage fees. We generalize the
previous work in five different steps; (i) agents may trade multiple units,
(ii) agents may store units between periods with some fee, (iii) sellers may
trade with loss to avoid storage cost, (iv) adding production of units and
finally (v) ZI-P agents may add an expected storage cost onto submitted ask
prices, these new agents are named ZI-Pe agents. Thereby creating a complex
artificial market more similar with real-world markets, which is compared to
the previous existing simpler market models. We also study how the ZI-P
by Cliff et al. (1997) and ZI-Pe agents react to an increasing storage fee.

We present the reader with three main results; (i) simulations with pro-
duction and free storage creates transaction price series more similar to mar-
ket experiments with human agents. (ii) Adding a small storage fee generates
poor performance by ZI-U, ZI-C and ZI-P agents. Most sellers goes bankrupt
with a resulting drop in the equilibrium price. (iii) An enhancement of the
ZI-P agents allows the sellers to add the storage cost onto the offered prices.
These enhanced agents have some success (for small storage fees) contributing
with more transactions and a more stable equilibrium price series, compared
with the original ZI-P agents.

The outline of this paper is as follows, the papers continues with the
first theoretical part presenting and discussing the work of Gode and Sunder
(1993) and Cliff et al. (1997) in technical terms for reference. The second
theoretical part describes the additional factors and rules unique for this
paper and the motivation for adding them into the model. Continuing with
a presentation, analysis and discussion of the results. Finally we present
some conclusions, implications and questions for future study.

5



2 Market models and agents

This section presents the model environment of the agent-based simulations.
We begin by formally introduce the Double Auction (DA) market and pro-
ceed by describing the markets (and agents of) Gode and Sunder (1993)
and Cliff et al. (1997). Finally comparing the behaviour and performance of
markets populated by human agents and each of the three types of machine
agents.

2.1 Double Auction Market

The price setting mechanism used in this paper is the Double Auction(DA)-
market8. The DA-market is a very robust and simple method to create
markets, which efficiently and quickly approaches the theoretical Walrasian
equilibrium price. DA-markets are therefore commonly used in stock ex-
changes, commodity markets and when selling government bonds. Gjerstad
and Dickhaut (1998) defines a DA-market as a microeconomic system, which
in turn is defined in Definition 1 found in Smith (1982).

Definition 1 (Microeconomic system) A microeconomic system, S =
(e, I), is comprised of the environment e and an institution I. The envi-
ronment e is defined as,

e =
∏
i∈A

ei,

where A = {1, 2, . . . , n} is the set of agents and ei is the characteristics of
agent i (i.e. preferences, technology and endowment). The institution I con-
sists of a message space Mi for each agent i, an adjustment rule (specifying
the sequence of agent messages) and an outcome function, h(mt),

h(mt) = (h1(mt), h2(mt), . . . , hn(mt)) ,

where mt = (m1,t,m2,t, . . . ,mn,t) ∈Mt where Mt is the vector of the agent’s
messages defined as,

Mt =
∏
i∈A

Mi,t.

8There exits a large number of introductions to DA-markets. A comprehensive treat-
ment is given by Friedman (1993). The formation of prices in DA-markets, using exper-
iments and simulations is investigated in Friedman (1984), Cason and Friedman (1996)
and Gjerstad and Dickhaut (1998).
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We use two different kinds of agents; sellers and buyers. Sellers manu-
facture some commodity and have a production cost, ci = (ci,1, ci,2 . . . ci,n),
for each agent i ∈ A1 and n units of commodity. We assume that the seller
must sell the units in such order, that the cost is an increasing function of
quantity. The sellers’ profit is the difference between the price and the total
cost of the commodity, πi,k = pk− ci,k, where pk is the transactional price for
good k. We assume that sellers attempts to maximize its own total profit,
πi =

∑
k πi,k.

The buyers buy some commodity and have a redemption value, rj =
(rj,1, rj,2, . . . , rj,n), for each agent j ∈ A2 and m units of commodity. We
assume that the buyers must buy the units in such order, that the redemption
value is an decreasing function of quantity. The buyers seek to maximize the
net redemption value, the difference between the redemption value and the
transactional price, ηj,k = rj,k − pk, motivated by the assumption that the
buyers are equipped with some monotonically increasing utility function,
U(ηj, ·), where ηj =

∑
k ηj,k.

In our experiments there exists two goods, that are traded between the
agents; a currency and a commodity. The total set of agents is denoted
A = A1 ∪ A2, where A1 is the set of sellers and A2 the set of buyers. The
environment e is defined as the combined vectors of producers’ profits πi and
buyers’ net redemption values ηj,

e = {πi}i∈A1
∪ {ηj}j∈A2

.

An important remark is that the ordered vector of individual redemption
values r = (r1, r2 . . . rn) and producer costs c = (c1, c2 . . . cm), for n buyers
and m sellers, are some points of the demand and supply functions of the
market. These ordered vectors are used as the empirical supply and demand
functions to find the Walrasian equilibrium price.

Continuing with the institution of the DA-market, we have buyers shout-
ing (making/announcing) bids and sellers offers. Formalizing this procedure,
we introduce the notion of a message space in Definition 2 and rules for sell-
ers in Definition 3 and buyers in Definition 4 as in Gjerstad and Dickhaut
(1998).

Definition 2 (Message space) Let N = {x : x = n
10m

for n ∈ N}, i.e.
all positive valued number with m decimals. Every seller i ∈ A1 and buyer
j ∈ A2 has a message space M(s)

i,t and M(b)
j,t at any time t as,

M(s)
i,t ⊂ {i} × {0} × {N} M(b)

j,t ⊂ {0} × {j} × {N}.
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That is if a seller i ∈ A1 would like to submit an ask for a ∈ N , the message
space would be (i, 0, a), if a buyer j ∈ A2 would like to shout a bid of b ∈ N
the message would be (0, j, b).

Definition 3 (Best (outstanding) ask and acceptance) The best ask (or
outstanding ask) is denoted as a∗ = ak > ai for any i ∈ A1 ∩ {k}. A trade
(accept) occurs when buyer j ∈ A2 shouts bid (0, j, b) such that b > a∗, the
transaction price p is the best ask p = a∗. When an accept occurs we set
the best prices a∗ = b∗ = 0. If ask (i, 0, a) is shouted, by seller i ∈ A1, and
a∗ = 0 or a∗ > a, we set a∗ = a as the new best ask.

Definition 4 (Best (outstanding) bid and acceptance) The best bid (or
outstanding bid) is denoted as b∗ = bk < bj for any j ∈ A2 ∩ {k}. A trade
(accept) occurs when seller i ∈ A1 shouts ask (i, 0, 1) such that a < b∗, the
transaction price p is the best bid p = b∗. When an accept occurs we set the
best prices a∗ = b∗ = 0. If bid (0, j, b) is shouted, by buyer j ∈ A2, and b∗ = 0
or b∗ < b, we set b∗ = b as the new best bid.

2.2 ZI-U and ZI-C agents

The simplest possible agents for use in DA-markets was presented by Gode
and Sunder (1993). They introduced two types of Zero-Intelligence (ZI)
agents, which makes purely random bids and offers to the market. Each ZI-
agent have some predetermined maximum production cost, Λc, or a maximum
redemption value, Λv. Although that the two different versions of the ZI-
agent uses the same DA-market arrangement, summarized in Algorithm 1 in
Appendix A, they use two different methods of generating shouts. The first
type of ZI-agents, generates uniformly distributed random shouts using,

offers: ai,j ∼ U [0,Λc] bids: bi,j ∼ U [0,Λv]. (1)

Since this type of agent faces no budget constraints, i.e. submit offers/bids
that may generate losses, it is named Zero-Intelligence Unconstrained agents
(ZI-U). The other version of the ZI-agent uses a budget constraint and is
named Zero-Intelligence Constrained agents (ZI-C). The constraint is im-
plemented by reducing the set of possible bids and offers, such that shouts
creates non-negative profits,

offers: ai,k ∼ U [ci,k,Λv] bids: bj,k ∼ U [0, rj,k], (2)
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where ci,k the production cost for agent i ∈ A1 and good k ∈ {1, 2, . . . , n} and
rj,k denotes the redemption value for agent j ∈ A2 of good k ∈ {1, 2, . . . ,m}.
The value and cost for each agent is calculated as an uniformly distributed
random variable as ci,k ∼ U [0,Λc] and rj,k ∼ U [0,Λv]. As a result, ZI-C
agents are heterogeneous each having different cost/redemption values.

2.3 ZI-P agents

Cliff et al. (1997) introduces Zero-Intelligence Plus agents (ZI-P), a more ad-
vanced version of the ZI-C agents including the ability of adaptive behaviour.
These agents observes the shouts and transactional prices on the market and
uses this information to adapt the mark-up. In such manner, that the agents
own shouts approaches the observed transactional prices and thereby also
the theoretical price. The ZI-P agents therefore do not make purely random
shouts and also rely on an open order book, i.e. all shouts are public to all
agents.

As the ZI-P agents uses a mark-up onto the random cost/value, the shout
generating function differs from function used by the ZI-C agents. Given a
cost ci,k or redemption value rj,k, the shout prices are generated as,

offers: ai(t) = ci,k(1 + µi(t)) bids: bj(t) = rj,k(1 + µj(t)), (3)

where µi(t) is the mark-up calculated by the Widrow-Hoff delta rule, dis-
cussed in detail below. Due to the budget restriction introduced into the
ZI-C agents in the previous section, the mark-up must be negative for the
buyers, µj(t) ∈ [−1, 0], and positive for the sellers, µi(t) ∈ [0,∞). The
mark-ups are updated after each shout using the following expressions,

sellers: µi(t) =

[
pi(t− 1) + ψi(t− 1)

ci,k

]
− 1, (4)

buyers: µj(t) =

[
pj(t− 1) + ψj(t− 1)

rj,k

]
− 1, (5)

where ψi is a momentum-based correction defined below. The mark-up cor-
rection itself is calculated as the difference in mark-up needed to bring the
price to some target price level. Cliff et al. (1997) discusses the problem with
using the target price, τi(t), as the most recent transactional price. This could
result in that the simulated mean transactional price largely differs from the-
oretical equilibrium price. To resolve this problem, Cliff et al. (1997) includes
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a mechanism imposing sellers to always strive to increase the price (to earn
more profit) and buyers to always seek to decrease the transactional price (to
increase net utility). This is modelled as a stochastic function of the most
recent shout price as,

τi(t) = Ri(t)q(t) + Bi(t), (6)

where q(t) is the most recent shout price withRi(t) and Bi(t) as some uniform
random variables (with signs depending on if the agent would like to increase
or decrease the mark-up). An agent wishing to increase the price would
therefore use positive values of the random variables. This would create a
target price that is somewhat higher then the most recent shouted price.
This target price is used by the Widrow-Hoff delta value which calculates
the adaptive change in the shout price by,

∆i(t) = βi (τi(t)− pi(t)) , (7)

where βi is the learning rate coefficient, with βi ∈ [0, 1] for each agent
i ∈ A. To remove any high-frequency oscillations around the price level,
a momentum-based update procedure is also added. This dampens any big
changes in the mark-up between two updates. The value of the momentum-
based mark-up update, ψi(t), is calculated using,

ψi(t) = γiψi(t− 1) + (1− γi)∆i(t− 1) with, ψi(0) = 0, (8)

where γi is called the momentum coefficient, with γi ∈ [0, 1] for each agent i ∈
A. This mark-up update is implemented in Algorithm 4, together with some
rules for when to increase and decrease the mark-up as shown in Algorithm
3 (in Appendix A).

2.4 Results and conclusions from previous work

We proceed by presenting some results from the ZI-agents, ZI-P agents and
human experiments from previous work. A comparison9 between human
traders and the two ZI-agent types introduced by Gode and Sunder (1993)
is presented in Figure 1.

9The simulation is based on the use of 12 traders (6 buyers and 6 sellers) with the
maximum redemption value Λv = 200 and maximum production cost Λc = 200. 6 trading
periods are used with the duration of 30 seconds per period, and 2 minutes per period in
the experiments with human agents.
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Figure 1: The results (Fig 1) from the first trial in Gode and Sunder (1993). The
left part of the figure depicts the implied supply and demand functions, of the
market, with the implied competitive equilibrium price and quantity. The right
hand side of the figure shows the sequence of transactional prices over a number
of trading periods. The horizontal line indicated the theoretical equilibrium price
of the market. For more information see Footnote 9.
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The resulting price series are quite different in appearance, from the er-
ratic prices of the ZI-U trader to the quickly adapting price series of human
traders. Gode and Sunder (1993) compares five trials with different demand
and supply functions, to examine different market structures (number of sell-
ers, buyers, costs and redemption values).

A regression analysis is also done of the mean square error (MSE) as
a function of transactional number. This analysis indicates that the MSE
decreases with increasing number of transactions for the ZI-C agents but not
the ZI-U agents10. We note the quick adaptation to the equilibrium price of
the human traders and that the trading periods have little effect on the price
level.

Using the extension of the ZI-agents provided by Cliff et al. (1997), we
have reproduced their findings together with simulations of the ZI-agents11.
The supply and demand functions together with the mean transactional
prices, are shown on the left hand side of Figure 2. The center plots shows
the sequence of transactional prices for the three compared agent types. The
shape of these processes are quite dissimilar, from the random noise of the
ZI-U agents to the more human like pattern (compare with the right hand
side of Figure 1) of the ZI-P agents. The volatility (variation is transac-
tional prices) of the ZI-U agents is quite high and is much lower for the ZI-P
agents, higher in the start of each trading period and then smaller after some
transactions.

On the right hand side in Figure 2 the root mean square errors (RMSE)
are compared between the three types of agents and the theoretical equilib-
rium price (dashed lines are ± one standard deviation). The downward slope
of the RMSE of the ZI-P agents is statistically significant12.

10Gode and Sunder (1993) makes no statement about the number of simulations the
regression analysis is based on. As such it is impossible to draw any conclusions on the
basis of the statistical significance of the regression analysis (and the following conclusions).

11Using the maximum redemption value Λv = 2.00 and maximum production cost Λc =
2.00 with 200 agents (Nb = 100 buyers and Ns = 100 sellers) over 6 trading periods, each
lasting until all agents have traded or the agents have made a total of 10000 shouts during
the current trading period. All agents have one tradeable unit of commodity or currency
during each trading period.

12These results only hold for symmetric supply and demand functions (same maximum
cost and redemption value), when asymmetric, the ZI-U and ZI-C preforms poorly as
already noted in Cliff et al. (1997).
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Figure 2: Results for comparison between the effectiveness of the ZI-U and ZI-C
agents by Gode and Sunder (1993) and the ZI-P agents proposed by Cliff et al.
(1997). The left hand side of the figure shows the supply and demand func-
tions used in these simulations, together with the mean of the transactional prices
(dashed line). In the center, the sequence of transactional prices during 6 trade
periods. On the right hand side, the mean RMSE is shown calculated as a mean
of 50 runs. Dotted lines indicates confidence intervals of length two standard de-
viations. The vertical dotted lines indicates the starting point of each trading
period. All parameters used in the simulation run is presented in Appendix B and
in Footnote 11.
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3 Modified agents with production and storage

In this section we modify the ZI-agents and ZI-P agents by Gode and Sunder
(1993) and Cliff et al. (1997). The material of this section is supplemented by
Appendix A, which includes a summary of all the involved variables describing
the agents and the algorithms used to simulate their behaviour.

We generalize the agents in five different steps; (i) enabling the agent
to trade multiple units of commodity and currency, (ii) storing commodity
between periods by paying some storage fee, (iii) enable the sellers to trade
with a loss to avoid storage cost, (iv) adding production thereby removing
the trading periods and finally by (v) introducing Zero Intelligence Plus-
enhanced (ZI-Pe) agents with some adaptive behaviour to add the estimated
storage cost into the shout generation.

3.1 Agents with storage

We begin by adding the ability to buy and sell multiple units of commodity
while allowing for different redemption values and costs for each unit. We
assume, as previously stated in Section 2.1, that the producers experience a
growing production cost and sellers experience diminishing value of owning
one more unit of commodity. The vectors of the costs and redemption values
are generated in the same manner as previously described but are sorted.
With ascending values, we find the cost vector ci = (ci,1, ci,2 . . . ci,n) for seller
i ∈ A1 and n commodities. With descending values, we find the value vector
rj = (rj,1, rj,2, . . . , rj,m) for buyer j ∈ A2 and m commodities. Since the
units must be traded in sequence by the assumption above, each agent have
some maximum number of transferable units during each trading period.
The agents are active for as long as they have units left to trade. When
deactivated, an agent is no longer able to shout ask/bid prices.

A further generalization is added by allowing the agents to store surplus
units until the next trading period. Thus creating a market where different
agents have different amounts of units to trade. We allow the agent to store
units by increasing its maximum number of transferable units. A consequence
of the above, is that it will be more difficult to sell the last unit of commodity
then the first. The sellers are also required to pay a storage fee, Γ, for each
unit and trading period left in storage. The total storage cost is, ΓNi,L,
where Ni,L is the number of transferable units left or seller i ∈ A1 after L
trading periods. This storage cost is added to the vector of profits made by
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the agents in the beginning of each trading period13.
In the original models, the ZI-agents must shout prices that yield some net

profits. With the introduction of storage costs, we now relax this assumption
for the sellers. Thus allowing the seller to choose the lesser of two losses
generated by selling units with a loss and the storage cost. To incorporate
this, we modify the requirement of ZI-C and ZI-P agents of positive net profit
to allow for a net loss during a trade, if this loss is smaller then the storage
cost. To avoid the problem of agents having infinite losses, we only allow this
modified pricing limitation if the agent have a positive total net profit. We
also introduce bankruptcy, if an agent have some total net profit, πi, smaller
then some arbitrary limit value, Π, such that πi < Π, the agent is removed
from the market for the remainder of the simulation.

3.2 Agents with production

The role of trading periods in the previous models is that an agent may sell
or buy a number of units during a trading period. Each period lasts for
a certain number of attempted trades or until all agents have traded (or if
the mark-up is 0 for all agents). Using the framework of the multiple unit
agents above, we introduce the ability of production for the agents. Each
agent produces units, that increases the maximum number of transferable
units. The production is determined by the production time, ωi, which is a
uniformally distributed random number, ωi ∼ U [0,Ω], for some agent i ∈ A
and some predetermined maximum production time Ω. An agent i ∈ A
produces a unit if 0 ≡ l (mod ωi), where l is the number of shouts. An
agent starts with some number of allocated units Ni,0, which increases with
production (after a certain number of shouts). If a successful trade occurs
then the maximum number of transferable units decreases for both involved
agents.

To include a cost of storage without trading periods, we let the sellers
pay a fee per shout instead of per period (as used above). This is motivated
by assuming that each shout requires some time and therefore may be used
as a time step. This new storage fee is significantly smaller then the storage

13One could also add some cost of storage for the buyers, much like a form of inflation,
where a part of the redemption value is removed, for each unit after each period in storage.
We however not add this feature in this market, but it remains an interesting area of
further improving the model. One could for example study the intertemporal allocation
of consumption for buyers in a economy with inflation.
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fee per trading period, due the the large number of shouts required to yield
a successful trade. This storage cost is added to the vector of profits after
each shout. The cost is calculated as γNi,l+1, for some seller i ∈ A1, shout l
and some storage fee γ per unit and shout.

3.3 ZI-P agents with storage cost awareness (ZI-Pe)

Finally, we propose a small enhancement of the ZI-P agents to include the
storage cost in pricing. Using ZI-P agents, the sellers are unaware of the
fact that a random storage cost is added onto their cost of production. In
the real world, this is a factor that sellers needs to include when pricing
a commodity. When neglected, this would yield random net losses for the
sellers and bankruptcy is likely to follow. To give the ZI-P agents the ability
to escape bankruptcy, we introduce some changes in the price calculations.
This allows the sellers to add the expected cost of storage into the offers
submitted to the market. This is done by adding the expected cost into the
seller pricing equation in (3) as,

ai(t) = ci,k(1 + µi(t)) + Si,k

where ci,k is the production cost for seller i ∈ A1 and unit k ∈ {1, 2, . . . , n}.
The expected storage cost Sik = γE [Ts], with E as the expectation operator,
Ts as the random storage time and γ as the storage fee defined above.

We will estimate the expected storage time, E [Ts], by calculating the av-
erage storage time previously experienced by the seller. The initial expected
storage time will be a predetermined constant (calculated by some pilot sim-
ulations), which then will be updated by the average experience storage time
of all sellers14.

14In a more realistic setting, we would not expect a seller to know the expected storage
time of the other competing sellers. We could justify this simplification by the following
argument. Each agent knows the expected number of shouts, from other agents, until
itself may present the market with a shout. Therefore the sellers could keep track of each
other on the market, noting the time of successful trades and the time of the next shout
from the seller. If the sellers had no units in storage during this time, the expected time
of production must have been the time of the first shout (after reactivation) minus the
expected number of shouts, from other agents, until itself may present the market with a
shout. Using this observation each seller could get an approximate value of the average
storage time, of all sellers, and thereby use this information to better its own estimated
storage cost.

If we did not allow this simplification, the sellers would experience a slow learning
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The enhancement above, is however not taking into account that the time
of storage is not constant during the simulation. The storage time depends
on the rate of production and on the distribution of production times. In
the beginning when all agents have a unit to trade the storage time could be
higher/smaller then the storage time at later shouts. If agents have many
units in storage at a later stage the initial storage time is lower then the later
storage time. The opposite occurs if the production is low and many agents
have no units in storage.

We could correct this by using a moving average, which only using a
last fraction of the recorded storage times, instead of the (complete) average
used above. This could however result in a worse estimator of the expected
storage time, due to a smaller sample size. Because the number of trades per
agent is quite small, only using a fraction of this data could produce a worse
estimator of the expected storage time/cost.

process, which requires many transactions for each seller to get a good estimate. This
could be compensated by using a large value of the maximum number of trades in one
simulation, Tmax. However we will later see that this is impracticable, due to the heavy
losses incurred by the sellers during the adaptation process. Therefore this simplification
is the only viable solution, conforming to the KISS (Keep-It-Simple-Stupid) principle often
used in agent-based modelling, see Axelrod (1997).
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4 Results and discussion

This section presents and discusses the three main results of this paper; (i)
We examine the RMSE15 in the model with production and free storage
model with the previous results presented by Cliff et al. (1997). (ii) We
investigate the efficiency and behaviour of ZI-agents in models with different
storage cost. (iii) We compare the performance of the modified ZI-Pe agents
with the original ZI-P agents on markets with different storage costs.

All regression analysis in this section have been validated by the use of
residual diagnostics and validation of assumptions made by the models. This
includes check of irregularities in the residuals, test for heteroscedasticity,
verification of global minimization of the risk function etc.16

4.1 Agents with production and free storage

We begin by analysing the differences in market performance and agent be-
haviour of markets with and without trading periods. As previously discussed
the trading periods introduces some small fluctuations in the transactional
price series in markets populated by machine agents. This fluctuation does
not appear in markets populated by human agents. This may be contributed
to one of two explanations; human agents accounts for the trading periods
which machine agents are unaware of, or some unique mechanism existing
only in markets with machine agents. The latter explanation covers the
mechanism of inactive agents, a trading period lasts as long as there are ac-
tive agents. When a new trading period starts, all agents are reactivated and
some agents have costs or values largely differing from the main population.
This results in an advantage for these agents, who may buy or sell a unit at
significantly larger/lower price then the main population of agents.

15The Root Mean Square Error is defined as RMSE =
√

1
N

∑N
i=1 (xi − pi)2, for N es-

timated values and where pi is the theoretical equilibrium price and xi the transactional
price. The theoretical equilibrium prices are found as the intercept of the empirical supply
and demand functions, using linear interpolation. This solution will introduce an error
if there are few active agents on the market and/or due to the assumption of linear and
deterministic demand/supply functions. The costs of the sellers are the sum of the deter-
ministic production cost and the stochastic storage cost. Therefore the supply function
will be stochastic, which introduces an error into the equilibrium price and therefore the
RMSE.

16The interested reader may contact the author for more information about the valida-
tion and its conclusions.
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Figure 3: The mean transaction price, equilibrium price and RMSE from 50
simulation runs of a symmetric market populated by agents using production and
free storage. Each run lasts a maximum of 10000 shouts or until 800 successful
trades. The simulation uses Ns = 50 sellers, Nb = 50 buyers with maximum cost
and redemption value Λc = Λv = 2. Dotted lines indicates confidence intervals of
length two standard deviations. The regression line in the mean RMSE graphs are
calculated by non-parametric local linear polynomial regression. Compare with
the simulation with trading periods in Figure 2 in Section 2.4.
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In Figure 3 we study a simple case17 without trading periods on a sym-
metric market18. We will assume constant cost and value for each agent,
independent of the number of units sold/bought. We note that the transac-
tional price series lack the small fluctuations, found in previous simulations
with trading periods. This result is explained by the previous discussion
and therefore also anticipated. When trading periods are removed and the
number of transferable units changes uniformly during the simulation. We
would therefore not anticipate any larger fluctuations in the transactional
prices. This shows that the removal of the trading periods generates a result
more similar to the data discussed from markets populated by human agents
(previously presented in Figure 1).

Studying Figure 3, we note the difference in the equilibrium price for the
different agent types. The ZI-U agents have a series of equilibrium prices
that decreases rapidly after 400 trades. This drop in equilibrium prices is
the result of a high number of sellers going bankrupt. The reason for this
is the lack of budget constraint, as discussed previously this could generate
significant losses for the agent. The position for the sudden drop in the
equilibrium price is determined by size of the bankruptcy limit. For the ZI-
C and ZI-P agents, the equilibrium price is quite stable during the entire
simulation.

We also present the mean RMSE calculated by non-parametric local (lin-
ear) polynomial regression19. The ZI-P agents have the smallest RMSE and
are also the most efficient in trading at the equilibrium prices. The increase
in RMSE for the ZI-C and ZI-U agents at the end of the simulation runs,
are the result of growing variations of the mean equilibrium price. The ZI-C
agents have some larger variations in the equilibrium price at the end of the
simulation run. This is explained by an increasing agent bankruptcy, reduc-
ing the number of agents and changing the supply and demand functions.

17Many different market set-ups have been analysed with the same conclusion. Sim-
ulation studies have been done on markets varying the market parameters presented in
Appendix A.

18With Ns = Nb = 50 sellers and buyers and maximum cost and redemption value
Λc = Λv = 2. All other parameters as described in Appendix B.

19We have used local (linear) polynomial kernel regression with the use of the Gaussian
kernel, to estimate the regression function. The smoothing parameter was chosen by min-
imizing the risk function, the leave-one-out cross-validation score. The 95 % confidence
intervals were estimated by the same method. For an introduction to non-parametric re-
gression, see Wasserman (2010) and for statistically advanced readers, see Haerdle (2004).
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4.2 Agents with production and storage with cost

We continue by introducing a fee for sellers storing units instead of trading
them. In Figure 4 we present a symmetric market20 with no storage fee,
γ = 0. This simulation run is used as a benchmark with other simulation
runs where storage fees are introduced. Much of the analysis is covered above
but we additional note the large number of active ZI-C agents (the result of
difficulties in finding trading partners). Visible by observing that ZI-C agents
have 700 successful trades compared to 800 trades for ZI-U and ZI-P agents.

In Figure 5 we present the results of simulation on a market with a small
storage fee, γ = 0.0001 (per units and shout). In comparison with the
benchmark simulation, we note the decrease in the number of active agents
and transactions. The most dramatic decrease is found in the number of
transactions and active agents of the ZI-U agents. As before, this result is
the consequence of a large number of bankrupt ZI-U agents. The ZI-C and
ZI-P agents preforms better with more trades and a larger number of active
agents on the market.

All agent types experiences a large increase in the mean RMSE and the
equilibrium prices at higher number of transactions. This is the result of
agents finally going bankrupt and the available number of transferable units
on the market decreases rapidly. None of the agent types are therefore ca-
pable to handle the storage fee in the long run. We also note that all agents
have larger RMSE, compared to the case with storage costs, as predicted by
the discussion before this could be contributed to the difficulty of obtaining
the theoretical price using the stochastic supply function.

Simulation runs was also conducted with increasing storage fees γ ∈
{0.001, 0.01, 0.1} (per units and shout). The analysis is the same as on the
market with a smaller storage fee, γ = 0.0001, above. The increase in the
storage fee only decreases the number of trades made, before the rapid de-
crease of the mean equilibrium prices and the resulting increase in mean
RMSE.

20With Ns = Nb = 50 sellers and buyers, maximum cost and redemption value Λc =
Λv = 2. All other parameters as described in Appendix B.
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Storage cost: 0

Figure 4: The mean transaction price, equilibrium price and RMSE from 50 sim-
ulation runs of a symmetric market populated by agents using production and free
storage, γ = 0. Each run lasts a maximum of 10000 shouts or until 800 successful
trades. The simulation uses Ns = 50 sellers, Nb = 50 buyers with maximum cost
and redemption value Λc = Λv = 2. Dotted lines indicates confidence intervals of
length two standard deviations. The regression line in the mean RMSE graphs are
calculated by non-parametric local linear polynomial regression.
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Storage cost: 1e−04

Figure 5: The mean transaction price, equilibrium price and RMSE from 50 sim-
ulation runs of a symmetric market populated by agents using production and
costly storage, γ = 0.0001. Each run lasts a maximum of 10000 shouts or until
800 successful trades. The simulation uses Ns = 50 sellers, Nb = 50 buyers with
maximum cost and redemption value Λc = Λv = 2. Dotted lines indicates confi-
dence intervals of length two standard deviations. The regression line in the mean
RMSE graphs are calculated by non-parametric local linear polynomial regression.
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4.3 ZI-P agents with storage cost awareness

We propose to resolve the problem with bankruptcy by adding the expected
storage cost into the price asked by the ZI-P agents. This allows the sellers
to cover some/all of the storage expense by increasing the ask prices. To
estimate this expected storage cost, the sellers will use an average of the
previous storage costs. On average, the storage costs should be shared by
the buyers and seller21. These enhanced ZI-P agents will be referred to as
ZI-Pe agents.

Simulation studies comprised of 50 runs was conducted to study the ef-
ficiency of the original ZI-P agents by Cliff et al. (1997) and the new ZI-Pe
agents. In Figure 6 we study a symmetric market22 with a small storage fee,
γ = 0.0001, and initial expected storage time as t̄s,0 = 50 shout attempts.

The main difference between the original ZI-P agents and the ZI-Pe
agents, is the number of successful trades during 10000 shouts. The orig-
inal agents trades 600 units and the modified agents trades 800 units. The
ZI-Pe agents do not experience the same large increase in the mean RMSE as
the original ZI-P agents. This results in a smoother equilibrium price series
without the sudden drop at large number of completed trades. We also note
the increase in the mean equilibrium price, which is the result of storage costs
being added to the asked prices from the sellers. This results does not gener-
ally hold on markets with larger storages fees23 γ ≥ 0.01, on which the ZI-Pe
agents preform almost as bad as the original agents. One important note
is that ZI-Pe agents holds onto the market a bit longer, thereby generating
more successful trades then ZI-P agents at the same number of attempted
shouts. Which in itself is an encouraging result and shows that the ZI-Pe
agents work to some extent as intended.

A remaining problem is to increase the pace of which the ZI-Pe agents
form the correct storage cost expectations. Preliminary simulations were
done where the seller was not allowed to use the storage times of the other
sellers. This however created a market where sellers went bankrupt before a

21From standard economic theory it is known that distribution of an additional cost
depends on the buyers price elasticity.

22With Ns = Nb = 50 sellers and buyers, maximum cost and redemption value Λc =
Λv = 2. All other parameters as described in Appendix B.

23The size of the largest possible storage fee is also related to the rate of production, Ω,
the maximum redemption value, Λv, and the maximum production cost, Λc. Exactly how
these parameters are related to the efficiency of the market populated by ZI-P and ZI-Pe
agents remains an area of further study.
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Figure 6: The number of active agents, mean RMSE and mean equilibrium price
from 50 simulation runs of a symmetric market populated by agents using pro-
duction and costly storage, γ = 0.0001. Each run lasts a maximum of 100000
shouts or until 800 successful trades. The simulation uses Ns = 50 sellers, Nb = 50
buyers with maximum cost and redemption value Λc = Λv = 2. Dotted lines indi-
cates confidence intervals of length two standard deviations. The regression line in
the mean RMSE graphs are calculated by non-parametric local linear polynomial
regression.

good estimate for the storage cost could be found. To resolve this we then
allow the seller to know the storage costs of all the other sellers in simulation
presented in this paper. This could however create a situation where all
agents adds the same expected cost onto the price. This is an undesirable
outcome because in real life, both the beliefs and previous experience are
used to find the expected storage cost. Therefore the expected storage cost
should differ from seller to seller. This could be resolved by adding some
random term to the estimated expected storage time. Which would act as
some noise thereby giving the sellers heterogeneous estimated storage costs.
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5 Concluding remarks

The aim of this paper was to analyse the effects of removing trading periods,
in the agent-based models populated by ZI-agent. This was done by intro-
ducing storage and production into the market. As discussed in the previous
section, this created a price series more like the one observed in experiments
of markets with human agents. This new model is therefore a step towards
finding the smallest needed intelligence and the simplest possible market,
that will mimic the human markets satisfactory.

We have successfully demonstrated that the removal of the trading peri-
ods, gave no larger differences in comparison with the previous work done by
Gode and Sunder (1993) and Cliff et al. (1997). But small changes created
a market model that better corresponds with the real-world market, where
buyers and sellers enters at random trading different number of units. The
generalization of the market is therefore relevant in the context of trying to
create more realistic markets. It is also desirable to keep the agents as simple
as possible and it is therefore an interesting result that no more rationality
is needed, for the agents to act efficiently on this new market.

The next step was the introduction of a storage fee into the market. Even
when a small fee was charged sellers, for storing units instead of trading,
the ZI-agents did not create an efficient market. Most of the agents went
bankrupt and thereby limiting the market efficiency. We might therefore
conclude that ZI-agents presented by Gode and Sunder (1993) and Cliff et al.
(1997) are unable to adapt to an environment with storage fees. Some more
rational behaviour (intelligence) is needed to enable the agents to survive
longer and therefore getting some more revenues to stay off bankruptcy. This
requires some foresight and planning capability of the agents, they need to
have some belief of how long they have to store the unit, before they may sell
it on the market. This result shows that for machine agents to trade on a
market with storage and production (random events associated with revenue
and cost) require much more intelligence then the ZI-agents, discussed in this
paper.

This could have real-world implications when DA-markets are used at
stock exchanges etc. where the use of algorithm trading and problems with
transaction costs and asymmetric information are complicating factors. Sim-
ulations could be used to analyse these situations and thereby conclude if the
Walrasian equilibrium is reached using the market rules and ZI-agents.

In the last step, we enhanced the ZI-P agents with the simplest mechanism
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to form an expected future storage cost. This was based on the average of the
mean storage time of all the sellers. This mechanisms enabled the modified
ZI-P agents to preform somewhat better then the original agents, in market
with small storage fees. This mechanism was not able to handle the markets
with higher storage fees and more work needs to be done to find a better
(but still simple) mechanism to adapt to storage costs.

There are many areas in which further work may be done to improve the
agents and markets presented in this paper. The algorithms that enables
the ZIP-agents to adapt their mark-up, needs to be extensively modified to
allow the agents to also include the storage cost in the mark-up calculations.
This will require the agents to calculate some expected storage time (cost)
with the information available, it is possible to use some kind of adaptation24

using reinforced learning or belief-based learning to solve this problem. The
market model could also be improved upon by letting the buyers experience
some inflation in the redemption values, waiting longer would give then a
lower net utility. This would also require some modification of the buyers,
so that they are aware of this inflation and may act to minimize its effects.

A more complete study of the sensitivity of the model is also needed, to
ensure that the results of this paper holds even with small variations in the
parameters determining the model. This would include more simulation trials
in different market setups, with a range of different demand/supply functions
and number of agents/buyers/sellers. The interaction between storage fees,
bankruptcy limits and production times should also be studied to find suit-
able values for these parameters, that matches observed real-world markets.

Further work could also be devoted to study DA-markets with friction
populated by machine agents. As discussed above, the real-world applications
of DA-markets are often found in the financial industry. It would therefore
be justified to study the implications of transaction fees (generalizing the
storage fee), introducing assets25 instead of commodities, generating some
dividends (random profits for sellers and buyers). In this model one could
study phenomenon related to the recent/current financial crisis, i.e. the role
of debt/losses on rational agents and market crashes. Some previous work in
this area includes experimental markets in Smith et al. (1988) and markets
populated by machine agents in Duffy and Ünver (2006).

24These methods are presented in Duffy (2006) and compared in Feltovich (2000) and
Salmon (2001).

25The use of experiments to analyse asset markets is discussed in Sunder (1995).
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A Algorithms

This appendix presents the algorithms used in the simulations of the ZI-
agents, ZI-P agents and the modified agents with production and storage.

A.1 ZI-U and ZI-C agents

The ZI-agents are introduced in Section 2.2 and does only depend on the se-
quence of the program presented in Algorithm 1 together with the calculation
of shout prices. Which are random variables, presented in Section 2.2, offers
as ai,k ∼ U [0,Λc] or bids bj,k ∼ U [0,Λv] for ZI-U agents. For ZI-C agents
the shouts are generated as, offers ai,k ∼ U [ci,k,Λv] and bids bj,k ∼ U [0, rj,k]
because these shouts must yield some profit (or no loss) for the agent. The
redemption value (for agent j and good k) rj,k and the cost for production
(by agent i and good k) ci,k, was also calculated as an uniformly distributed
random variable, as ci,k ∼ U [0,Λc] and rj,k ∼ U [0,Λv], for some values of Λc

and Λv. The parameters are summarized in Table 1 below.

Description Name

Max. Cost for Seller Λc

Max. Redemption Value for Buyer Λv

No. Sellers Ns

No. Buyers Nb

Table 1: The required parameters of the ZI-U and ZI-C agents.
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Algorithm 1 Sequence: Gode and Sunder (1993) Double Auction Market
with ZI-agents.

Require: Some maximum values of the possible value Λv and costs Λc for
all agents.
for Each seller i ∈ {1, 2 . . . ,m} and buyer j ∈ {1, 2 . . . , n}. do
rj,k ∼ U [0,Λv] and cj,k ∼ U [0,Λc].

end for
for A number of turns, T . do

while Not all agents have traded do
Select a random agent l and generate an offer or a bid (depending on
agent type). For ZI-U as in (1), and for ZI-C as in (2).
if The agent is a seller then

Compare the offer to the order book, if there exists no other offers
this will be the best offer al → a∗. If this offer is smaller then
the current best offer, al < a∗ this offer will replace the best offer
al → a∗. If this offer is smaller then the current best bid al ≤ b∗,
then trade at b∗ and clear the order book.

else
We have a buyer. Compare the bid to the order book, if there exists
no other bids this will be the best bid bl → b∗. If this bid is greater
then the current best bid, bl > b∗ this offer will replace the best bid
bl → b∗. If this bid is greater then the current best offer bl ≥ a∗,
then trade at a∗ and clear the order book.

end if
end while

end for
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A.2 ZI-P agents

The ZI-P agents introduced in Section 2.3 are comprised of a number of al-
gorithms. The sequence of the simulation is shown in Algorithm 2 below and
includes an algorithm for determining mark-up changes in Algorithm 3 and
an adaptive algorithm (that calculates the mark-up changes) in Algorithm
4. The program needs a lot of parameters specified, to be able to conduct
the simulations. These parameters are specified in connection to the results
presented in the report and in Appendix B. A summary of the relevant pa-
rameters in shown below in Table 2.

Description Name Value

Max. Cost for Seller Λc

Max. Redemption Value for Buyer Λv

No. Sellers Ns

No. Buyers Nb

Learning coefficient η ηi ∼ U [0, η0] with η0 = 0.1.
Momentum coefficient β βi ∼ U [β0,1, β0,1 + β0,2]

with β0,1 = 0.1 and β0,2 = 0.30.

Initial Mark-up (sellers) µi(0) µi(0) ∼ U [µ0,1, µ0,1 + µ0,2].
Initial Mark-up (buyers) µi(0) µi(0) ∼ U [−(µ0,1 + µ0,2),−µ0,1].
Seller Cost ci The ordered vector (ascending) ci,

where ci,(k) ∼ U [0,Λc] for k ∈ {1, 2, . . . , ns}.
Buyer Redemption Value ri The ordered vector (descending) ri,

where rj,(k) ∼ U [0,Λr] for k ∈ {1, 2, . . . , nb}

Table 2: The parameters used in the simulation of ZI-P agents using the sequence
in Algorithm 2.
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Algorithm 2 Sequence: Cliff, Bruten and Road (1997) ZI-P agents.

Initialize all required variables and set constants to pre-specified values.
Generate the agent characteristics, using randomized values of the con-
stants.
for A number of trading turns do

Reactive all agents and reset some variables.
while The number of trades T < Tlimit for some limit value Tlimit and
as long as all agents are not inactive. do

Use Algorithm 3 to adjust the mark-up.
Select an active agent l by random and generate a shout, by (3).
if The agent is a seller then

Compare the offer to the order book, if there exists no other offers
this will be the best offer al → a∗. If this offer is smaller then
the current best offer, al < a∗, this offer will replace the best offer
al → a∗. If this offer is smaller then the current best bid al ≤ b∗,
then trade at b∗ and clear the order book and make the trading
agents inactive. Let T ← T + 1.

else
We have a buyer. Compare the bid to the order book, if there exists
no other bids this will be the best bid bl → b∗. If this bid is greater
then the current best bid, bl > b∗, this offer will replace the best bid
bl → b∗. If this bid is greater then the current best offer bl ≥ a∗,
then trade at a∗ and clear the order book and make the trading
agents inactive. Let T ← T + 1.

end if
end while

end for
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Algorithm 3 Cliff, Bruten and Road (1997) Price adaptation in Double
Auction Market with ZI-P agents.

Require: The latest shout price q(t) and if it was accepted. The last bid bi
or offer ai for the agent i.
if The agent is a seller, i then

if The last shout q was accepted then
Any seller i for which ai ≤ q should raise its margin using Algorithm
4.
if The last shout was a bid then

Any active seller i for which ai ≥ q should lower its margin using
Algorithm 4.

end if
else

if The last shout was an offer then
Any active seller i for which ai ≥ q should lower its margin using
Algorithm 4.

end if
end if

else
The agent is a buyer, i
if The last shout q was accepted then

Any buyer i for which bi ≥ q should raise its margin using Algorithm
4.
if The last shout was an offer then

Any active buyer i for which bi ≤ q should lower its margin using
Algorithm 4.

end if
else

if The last shout was a bid then
Any active buyer i for which bi ≤ q should lower its margin using
Algorithm 4.

end if
end if

end if
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Algorithm 4 Cliff, Bruten and Road (1997) Mark-up adaptation in Double
Auction Market with ZI-P agents.

Require: The last shout price q(t), the last offer/bid from the agent pi(t−1).
if The agent would like to increase its mark-up µi(t) then

Calculate a new target price τi(t) for the agent using (6) with positive
values for Ri(t) and Bi(t).

else
(The agent would like to decrease its mark-up µi(t))
Calculate a new target price τi(t) for the agent using (6) with negative
values for Ri(t) and Bi(t).

end if
Calculate the new value of the mark-up correction, ∆i(t− 1), using (7).
Calculate the new momentum-based correction ψi(t) using (8).
Calculate the new mark-up µi(t) for the agent using (5).
if The new mark-up will generate a loss, µi(t) < 0 for sellers or if µi(t) > 0
or µi(t) < −1 for buyers. then

Use the old mark-up, µi(t) = µi(t− 1).
end if
return The mark-up µi(t) and the value of the momentum-based correc-
tion ψi(t).
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A.3 Agents with production and storage

The modified agents uses nearly the same price adaptations as for the orig-
inal ZI och ZI-P agents but with some minor changes to use more then one
redemption value and cost. We also need to modify the sequence to incorpo-
rate the production of units, bankruptcy, storage costs and agents entering
and exiting the market. A general outline of the sequence of the simulation
is shown in Algorithm 5 and is used with some different methods to generate
the pricing. For ZI-U agents we use the same price generating process as
before i.e.

offers: ai,k ∼ U [0,Λc] bids: bj,k ∼ U [0,Λv],

where Λc and Λv are predetermined values for the maximum production cost
and redemption value. For ZI-C agents we introduce that the agents may sell
with some losses if this loss is smaller then the expected total storage cost of
holding the unit. Therefore we rewrite the price generating process as i.e.

offers: ai,k ∼ U [ci,k + Sik ,Λc] bids: bj,k ∼ U [0, rj,k]

where Sij = γE[Ts] is the expected storage cost calculated as discussed in
Section 3. The redemption value for agent j of good k, rj,k and the cost for
production by agent i and good k, ci,k, was also calculated as a uniformly
distributed random variable as ci,k ∼ U [0,Λc] and rj,k ∼ U [0,Λv] for some
values of Λc and Λv. The ZI-P agents who is sellers uses Algorithm 6 to
update their prices with the modification that the cost is comprised of the
production cost ci,k and the expected storage cost Si,k as

ai(t) = ci,k(1 + µi(t)) + Si,k (9)

These programs requires a lot of parameters specified to be able to con-
duct the simulations. These parameters are specified in connection to the
results presented in the report and in Appendix B. A summary of the relevant
parameters in shown below in Table 3.
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Description Name Value

Max. Cost for Seller Λc

Max. Redemption Value for Buyer Λv

Max. time of Production Ω
Limit of Bankruptcy Π
Storage Cost (sellers) γ
No. Sellers Ns

No. Buyers Nb

Max. No. Sold Units (per turn) ns
Max. No. Bought Units (per turn) nb
Learning coefficient η ηi ∼ U [0, η0] with η0 = 0.1.
Momentum coefficient β βi ∼ U [β0,1, β0,1 + β0,2]

with β0,1 = 0.1 and β0,2 = 0.30.

Initial Mark-up (sellers) µi(0) µi(0) ∼ U [µ0,1, µ0,1 + µ0,2]
Initial Mark-up (buyers) µi(0) µi(0) ∼ U [−(µ0,1 + µ0,2),−µ0,1].
Seller Cost ci The ordered vector (ascending) ci,

where ci,(k) ∼ U [0,Λc] for k ∈ {1, 2, . . . , ns}.
Buyer Redemption Value rj The ordered vector (descending) rj ,

where rj,(k) ∼ U [0,Λr] for k ∈ {1, 2, . . . , nb}
Production level ωi ωi ∼ U [0,Ω].

Table 3: The required parameters used with the modified agents with storage and
production.
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Algorithm 5 Sequence: Agents with production and storage.

Initialize all required variables and set constants to pre-specified values.
Generate the agent characteristics using randomized values of the con-
stants.
while The number of trades T < Tlimit for some limit value Tlimit and as
long as all agents are not inactive. do

Check if agents are bankrupt (if
∑

k πi,k < Π), add storage fees for
producers with surplus units (add loss γNi,n, where Ni,n is the number
of units in storage for agent i at shout attempt n.) and produce units if
necessary (if mod (n, ωi) = 0 for some agent i at shout attempt n).
Pricing adaptations for ZI-P agents: Use Algorithm 6 to adjust the mark-
up.
Select an active agent l by random and generate a shout.
if The agent is a seller then

Compare the offer to the order book, if there exists no other offers this
will be the best offer al → a∗. If this offer is smaller then the current
best offer, al < a∗ this offer will replace the best offer al → a∗. If this
offer is smaller then the current best bid al ≤ b∗, then make a trade
at b∗ and clear the order book and decrease the maximum number of
transferable units for the trading agents. Also check if the agents still
are active of if they have no more units to trade. Let T ← T + 1.

else
We have a buyer. Compare the bid to the order book, if there exists
no other bids this will be the best bid bl → b∗. If this bid is greater
then the current best bid, bl > b∗ this offer will replace the best bid
bl → b∗. If this bid is greater then the current best offer bl ≥ a∗,
then make a trade at a∗ and clear the order book and decrease the
maximum number of transferable units for the trading agents. Also
check if the agents still are active of if they have no more units to
trade. Let T ← T + 1.

end if
Let k ← k + 1.

end while

38



Algorithm 6 Mark-up adaptation in Double Auction Market with ZI-P
agents, multiple units and storage costs.

Require: The last shout price q(t), the last offer/bid from the agent pi(t−1).
if The agent would like to increase its mark-up µi(t) then

Calculate a new target price τi(t) for the agent using (6) with positive
values for Ri(t) and Bi(t).

else
(The agent would like to decrease its mark-up µi(t))
Calculate a new target price τi(t) for the agent using (6) with negative
values for Ri(t) and Bi(t).

end if
Calculate the new value of the mark-up correction, ∆i(t− 1), using (7).
Calculate the new momentum-based correction ψi(t) using (8).
Calculate the new mark-up µi(t) for the agent using (5).
if The new mark-up, µi(t) < 0, for a seller will generate a loss that is
greater then the storage cost then

Use the old mark-up, µi(t) = µi(t− 1).
end if
if The new mark-up will generate a loss for buyers i.e µi(t) > 0 or µi(t) <
−1. then

Use the old mark-up, µi(t) = µi(t− 1).
end if
return The mark-up µi(t) and the value of the momentum-based correc-
tion ψi(t).
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B Parameters used in simulation runs

This appendix presents the parameters used in the simulation studies.

Description Name Value
Max. Cost for Seller Λc 2.00
Max. Redemption Value for Buyer Λv 2.00
No. Sellers Ns 50
No. Buyers Nb 50
Learning coefficient η η0 = 0.1.
Momentum coefficient β β0,1 = 0.1 and β0,2 = 0.30.
Initial Mark-up (sellers) µi(0) µ0,1 = 0.05 and µ0,2 = 0.30.
Initial Mark-up (buyers) µi(0) µ0,1 = 0.05 and µ0,2 = 0.30.
Number of maximum trade periods 6
Number of maximum shouts 10000

Table 4: The parameters used in the simulation run shown in Figure 2.

Description Name Value
Max. Cost for Seller Λc 2.00
Max. Redemption Value for Buyer Λv 2.00
Max. Production Level Ω 1000
No. Sellers Ns 50
No. Buyers Nb 50
Limit of Bankruptcy Π −5
Storage Cost (sellers) γ 0
Learning coefficient η η0 = 0.1.
Momentum coefficient β β0,1 = 0.1 and β0,2 = 0.30.
Initial Mark-up (sellers) µi(0) µ0,1 = 0.05 and µ0,2 = 0.30.
Initial Mark-up (buyers) µi(0) µ0,1 = 0.05 and µ0,2 = 0.30.
Number of maximum shouts 10000
Number of maximum trades 800

Table 5: The parameters used in the simulation run shown in Figure 3.
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Description Name Value
Max. Cost for Seller Λc 2.00
Max. Redemption Value for Buyer Λv 2.00
Max. Production Level Ω 1000
No. Sellers and No. Buyers Ns, Nb 50
Limit of Bankruptcy Π −5
Storage Cost (sellers) γ 0, 0.0001 and 0.01
Learning coefficient η η0 = 0.1.
Momentum coefficient β β0,1 = 0.1 and β0,2 = 0.30.
Initial Mark-up (sellers) µi(0) µ0,1 = 0.05 and µ0,2 = 0.30.
Initial Mark-up (buyers) µi(0) µ0,1 = 0.05 and µ0,2 = 0.30.
Number of maximum shouts 10000
Number of maximum trades 800

Table 6: The parameters used in the simulation run shown in Figure 4 and Figure
5.

Description Name Value
Max. Cost for Seller Λc 2.00
Max. Redemption Value for Buyer Λv 2.00
Max. Production Level Ω 1000
No. Sellers and No. Buyers Ns, Nb 50
Limit of Bankruptcy Π −5
Storage Cost (sellers) γ 0.0001 (and 0.01)
Learning coefficient η η0 = 0.1.
Momentum coefficient β β0,1 = 0.1 and β0,2 = 0.30.
Initial Mark-up (sellers) µi(0) µ0,1 = 0.05 and µ0,2 = 0.30.
Initial Mark-up (buyers) µi(0) µ0,1 = 0.05 and µ0,2 = 0.30.
Initial expected storage time (sellers) t̄s,0 50
Number of maximum shouts 100000
Number of maximum trades 800

Table 7: The parameters used in the simulation run shown in Figure 6.
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