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Abstract

We are interested in Bayesian modelling of panel data using a mixed e�ects
model with heterogeneity in the individual random e�ects. We compare
two di�erent approaches for modelling the heterogeneity using a mixture of
Gaussians. In the �rst model, we assume an in�nite mixture model with a
Dirichlet process prior, which is a non-parametric Bayesian model. In the
second model, we assume an over-parametrised �nite mixture model with a
sparseness prior. Recent work indicates that the second model can be seen
as an approximation of the former. In this paper, we investigate this claim
and compare the estimates of the posteriors and the mixing obtained by
Gibbs sampling in these two models. The results from using both synthetic
and real-world data supports the claim that the estimates of the posterior
from both models agree even when the data record is �nite.

Keywords: Bayesian inference, mixed e�ects model, panel/longitudinal
data, Dirichlet process mixture, �nite mixture, sparseness prior
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Bayesian inference for

mixed effects models with heterogeneity

Johan Dahlin, Robert Kohn and Thomas B. Schön∗

April 1, 2016

Abstract

We are interested in Bayesian modelling of panel data using a mixed effects model with heterogeneity

in the individual random effects. We compare two different approaches for modelling the heterogene-

ity using a mixture of Gaussians. In the first model, we assume an infinite mixture model with a

Dirichlet process prior, which is a non-parametric Bayesian model. In the second model, we assume

an over-parametrised finite mixture model with a sparseness prior. Recent work indicates that the

second model can be seen as an approximation of the former. In this paper, we investigate this claim

and compare the estimates of the posteriors and the mixing obtained by Gibbs sampling in these

two models. The results from using both synthetic and real-world data supports the claim that the

estimates of the posterior from both models agree even when the data record is finite.

Keywords: Bayesian inference, mixed effects model, panel/longitudinal data, Dirichlet process

mixture, finite mixture, sparseness prior.
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1 Introduction

In many fields, we are interested in modelling the dependence of an observation yit of individual i at

time t given some regressors/covariates xit. This type of data is known as panel data in economics

[Baltagi, 2008] and longitudinal data in statistics [Verbeke and Molenberghs, 2009]. That is, when we

obtain multiple observations T of a number of N individuals over time. A common application is health

surveys in which annual questionnaires are sent out to a group of individuals. The focus is then to isolate

different factors that are correlated with disease or visits to the doctor. However, the importance of these

factors can vary between different sub-groups in the population and this is referred to as heterogeneity.

For prediction purposes, it is therefore important to captures these variations and be able to identify to

which sub-group a specific individual belongs.

Another popular application is recommendation systems for online retailing or streaming sites such

as Amazon, Netflix and Spotify. The underlying algorithms vary between different sites and are often

proprietary information unknown to the public. However, academic work in recommendation system by

Condliff et al. [1999] and Ansari et al. [2000] have made used of panel data models. The common theme

for both applications are that the number of observations T for each individual is typically much smaller

than the size N of the population. It is therefore essential to pool information together from similar

individuals to construct a model from data.

For this end, we consider a linear mixed effects model [Verbeke and Lesaffre, 1996] with observation

yit ∈ R for individual i = 1, . . . , N at time t = 1, . . . , T . This model can be expressed as

yit |α, βsi , σ2
e , xit ∼ N

(
yit, αxit + βsi zit, σ

2
e/ωi

)
, (1)

where α ∈ Rd denotes the fixed effects and βsi = {βsij}
p
j=1 ∈ Rp denotes the random effects for individual

i. Here, xit and zit denote the design matrices connected to the fixed and random effects, respectively.

Furthermore, σe > 0 denotes the standard deviation of noise affecting the observations and ωi > 0

denotes the individual scaling of the variance to allow for variance heterogeneity. We denote a Gaussian

distribution with mean µ and standard deviation σ > 0 by N (µ, σ2).

In this paper, we assume that βsi can be modelled as an infinite mixture of Gaussians. This means that

the random effects can for example be distributed according to a multi-modal distribution. Each mode

would then potentially correspond to a certain sub-group of the population with similar behaviour. This

information could be important in marketing, economics, medicine and other applications as discussed

by Allenby et al. [1998], Canova [2004] and Lopes et al. [2003]. A potential benefit of having an infinite

mixture is that the data determines the number of components to include in the model.
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An infinite mixture of Gaussians can be expressed by

βsi ∼
∞∑
k=1

ηkN (βsi ;βk, Qk), s.t.

∞∑
k=1

ηk = 1, (2)

for some weights ηk > 0, mean vector βk ∈ Rp and covariance matrix Qk ∈ Rp×p. We proceed to model

this mixture in a Bayesian setting in Section 2, where a Dirichlet process (DP; Ferguson, 1973, 1974)

prior is employed. This is a Bayesian non-parametric method, which can act as a prior for probability

distributions such as (2). However, the inference often relies on Markov chain Monte Carlo (MCMC;

Robert and Casella, 2004), which can be challenging to implement and sometimes mixes poorly. The

latter is discussed by Hastie et al. [2015] and could be a problem when applying this kind of model for

big data.

The main contribution of this paper is to compare two different models for the heterogenity described

by (2). In the first approach, we make use of a DP model for (2). In the second approach, we truncate the

infinite mixture to obtain an overparametrised finite mixture (FM) for which we make use of a sparseness

prior. The latter model is often simpler to implement and can also enjoy better mixing properties.

Ishwaran and Zarepour [2002] and Rousseau and Mengersen [2011] have analysed the properties of this

approximation. In short, the results are that the approximation is asymptotically consistent (in NT ) and

converges to the solution obtained when using a DP. The FM is over-parametrised but the sparseness

prior empties the superfluous components. Our aim is to compare these two approaches for mixed effects

models in terms of the estimate of the posterior and the mixing in the Markov chain constructed by

MCMC algorithms.

The comparisons are made on both synthetic and real-world data. The results indicate that the

posterior estimates are similar in most cases and that the similarity increases as N and T tend to

infinity. The mixing is compared using a Monte Carlo simulation with synthetic data. The resulting

mixing seems to be similar for the finite and infinite mixture models. Therefore, there is nothing lost or

gained by using either model compared with the other. More work is needed to see if this result holds

for even larger sets of data and alternative sampling schemes.

2 Bayesian mixture modelling

In this section, we discuss the details of the two approaches for modelling the mixture of the random

effects (2). The first approach uses the DP prior of the infinite mixture of Gaussians and the second

approach approximates the infinite mixture by a FM. We return to the problem of sampling from the

posterior of the parameters in the mixed effects model and the mixture for the random effects in Section 3.
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2.1 Infinite mixture model using a Dirichlet process

In the first approach, we model the random effects βsi using the infinite mixture model in (2) with the

DP [Ferguson, 1973, 1974] as a prior. The mixture model can be seen as a hierarchical Bayesian model,

which we develop step by step in this section.

The DP is an example of a Bayesian non-parametric model, where the number of parameters grow

with the number of observations and can be viewed as infinite. A realisation G from a DP is a random

discrete probability distribution in the form of an empirical distribution. Hence, we can express G

[Gelman et al., 2013] by

G =

∞∑
k=1

ηkδϑk
, (3)

where the weights {ηk}∞k=1 and locations {ϑk}∞k=1 are random variables. Here, δϑ′ denotes a Dirac

measure placed at ϑ′, where ϑ denotes the parameters of the mixture component. Furthermore, we have

that
∑∞
k=1 ηk = 1 with probability 1, which means that G can be interpreted as a probability measure.

Let DP(η0, G0) denote a DP with the concentration parameter η0 > 0 and the base measure G0. We

say that G is distributed according to a DP if all of its marginal distributions are Dirichlet distributed.

Let D(η) denote the Dirichlet distribution with concentration parameter η = {η1, . . . , ηR}. Hence, if G0

is a probability measure on the space (Ω,F), we have that

(
G(A1), G(A2), . . . , G(AN )

)
∼ D

(
η0G0(A1), η0G0(A2), . . . , η0G0(AN )

)
, (4)

for any finite (measurable) partition A1:N of Ω. Note that the expected value of G is the base measure

and therefore G has the same support as G0. Moreover, G is discrete with probability one even if the

base measure is continuous, which is useful in mixture models as discussed below.

Assume that we obtain some data generated from the model given by

G ∼ DP(η0, G0), ϑi |G ∼ G, i = 1, 2, . . . .

In many applications, we would like to compute the predictive distribution for some new parameter ϑ?

given the observations ϑ1:N . The predictive distribution can be computed as a marginalisation given by

p(ϑ? |ϑ1:N ) =

∫
G(ϑ?)p(G|ϑ1:N )dG,

which is possible to carry out in closed-form. The result is a so-called Pólya urn scheme discussed by
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Blackwell and MacQueen [1973]. This scheme can be expressed mathematically

ϑ? |ϑ1:N ∼
η0

η0 +N
G0 +

1

η0 +N

N∑
i=1

niδϑi . (5)

Here, ni denotes the number of parameters that are identical to ϑi, i.e.,

ni =

N∑
j=1

I [ϑj = ϑi],

where I [A] denotes the indicator function which assumes the value one if A is true and zero otherwise.

From (5), we note that the DP is a discrete process with a non-zero probability of ties, i.e., that

two or more realisations are identical to each other. From the Pólya urn scheme, we either draw a new

parameter from the base measure or an existing parameter from the Dirac mixture. The probability

of sampling a new parameter from the base measure is determined by concentration parameter. We

are more likely to sample from the base measure if η0 � N , which means that the predictive posterior

concentrates to the base measure. If the concentration parameter is small, we often sample from the

existing parameters, which gives many ties and a strong clustering behaviour.

Hence, we can make use of this clustering effect to reformulate (2) as a Dirichlet process mixture

(DPM; Antoniak, 1974) given by

G ∼ DP(α,G0), β,Q |G ∼ G, βsi ∼ N (β,Q), (6)

where we choose ϑ = {β,Q} for this particular model. The presence of ties means that several βsi will be

drawn from a Gaussian distribution with the same parameters. Hence, this is an alternative presentation

of (2).

We have now introduced the DPM and discussed the properties of the underlying DP as well as how

to compute the predictive posterior distribution. What remains is to discuss how to simulate from a

DPM and how to compute the prior-posterior update given some data. In this paper, we make use of

the stick-breaking by Sethuraman [1994] to simulate from the mixture. The procedure iterates

βk, Qk ∼ G0, ηk = Vk
∏
l<k

(1− Vl), Vk ∼ B(1, η0), (7)

for k = 1, . . . , R, where R is an upper bound on the number of components in the mixture selected by the

user. Here, B(a, b) denotes a Beta distribution with shape a > 0 and scale b > 0. Moreover,
∏
l<k(1−Vl)

denotes the length remaining of a unit stick after breaking off k − 1 pieces, where each Vk denotes the

fraction of the remaining stick to break off.
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Note that the truncation implied by the stick-breaking corresponds a mixture given by

βsi |η1:R, β1:R, Q1:R ∼
R∑
r=1

ηrN (βsi ;βr, Qr).

In many cases, we can choose R to be larger than the number of individuals N , so this is not a problem

when n is rather small. To see the connection between the sick-breaking and (5), we note that the

expected value of the Beta distribution sampled from in (7) is (1 + η0)−1. Hence, the expected part of

the stick to break off tends to zero when η0 →∞ and tends to one when η0 → 0. In the latter case, we

usually obtain a few components, which is in agreement with the previous discussion of the concentration

parameter. We return to computing the posterior of a DPM in Section 3 using Gibbs sampling.

2.2 Finite mixture model

The second approach that we consider is the FM, which can be recovered as a special case of the DPM

model (6) given by

βsi |Si, β1:R, Q1:R ∼ N (βSi , QSi), Si |η ∼M(1, η1, . . . , ηR), (8a)

βk, Qk ∼ G0, η ∼ D(η0,1, . . . , η0,R), (8b)

where the latent variable Si denotes which component that individual i belongs to. Here, M(1, p)

denotes the multinomial distribution with one try and event probabilities given by p. The parameters of

the mixture components are still realisations from the base measure. However, the DP is now a Dirichlet

distribution, which follows from the property of the DP discussed in connection with (4). The Dirichlet

distribution determines the probability of a certain cluster membership Si. Hence, we get a similar

clustering effect as for the DPM if we select η0 to be small. This is essentially the same result as we had

for the Pólya urn scheme in (5).

An interesting property discussed by Ishwaran and Zarepour [2002] and Rousseau and Mengersen

[2011] is that the FM can approximate the DPM. This means that the sparsity will empty unnecessary

components and that the estimate of the posterior tend to the true one. However, we need to be

careful when setting the hyperparameters in the Dirichlet prior distribution for this approximation to

work. On choice advocated by Ishwaran and Zarepour [2002] is to use the concentration parameter

η0,1 = . . . = η0,R = η0/R with η0 = 1. Here, the number of components R can be selected as n if the

amount of data is small. Here, the small value of η0 results in that a few samples from the Dirichlet

distribution are allocated most of the probability mass. Therefore, we get a sparsity effect as only a few

components are occupied a priori when η0 ≤ 1.

We discuss how to sample from the posterior of the FM (8) in Section 3
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3 Sampling from the posterior

In this section, we make use of MCMC sampling to estimate the posterior of the parameters in the

mixed effects model (1) and the mixture modelling the random effects (2) given the data {y, x, z} =

{{yit, xit, zit}ni=1}Tt=1}. The parameter vector is given by θ = {α, β1:R, Q1:R, β
s
1:N , ω1:N , σ

2
e , S1:N , η1:R},

which includes the parameters of the DPM (6) and the FM (8). To decrease the notational burden, we

have used the same notation for the parameters in both mixture models.

We make use of conjugate priors to obtain closed-form conditional posteriors, which allows for Gibbs

sampling as discussed by Gelman et al. [2013], Frühwirth-Schnatter [2006] and Neal [2000]. Note that

there are many other interesting alternatives to Gibbs sampling for estimating the posterior of a DPM.

Sequential Monte Carlo algorithms [Del Moral et al., 2006] discussed by Fearnhead [2004] and Ulker

et al. [2010] do not have problems with mixing but can be challenging to implement.

Slice samplers are also an interesting alternative discussed by Walker [2007], which are easy to im-

plement and give moderate or good mixing. Finally, split-merge algorithms can give good mixing as

discussed by Jain and Neal [2004] and Bouchard-Côté et al. [2015] but can be challenging to implement.

For the FM, a simple Gibbs sampling approach often gives good mixing and is easy to implement.

3.1 Prior distributions

To compute the posterior, we need to assign prior distributions for each of the elements in θ. Here, we

make use of the prior distributions from Frühwirth-Schnatter [2006, p. 265] for all the parameters except

for the mixture weights η1:R. For the fixed effects and the noise variance with heterogeneity, we choose

α ∼ N (α; a0, A0), σ2
e ∼ G−1(σ2

e ; ce0, C
e
0), ωi ∼ G

(ν
2
,
ν

2

)
, (9)

for individuals i = 1, . . . , n. Here, we introduce the notation G(a, b) for the Gamma distribution with

shape a > 0 and rate b > 0, which means that the expected value is ab−1. The inverse Gamma distri-

bution is denoted by G−1(a, b) with the expected value b(a− 1)−1. Hence, we have the hyperparameters

{a0, A0, c
e
0, C

e
0 , ν} for the user to choose.

We also need to choose a number of priors for the mixture model (2) describing the distribution of

the random effects. Here, we make use of the priors

βk ∼ N (βk; b0, B0), Q−1k ∼ W(Q−1k ; cQ0 , C
Q
0 ), (10)

where W(n, V ) denotes the Wishart distribution with n > 0 degrees of freedom and scale matrix V > 0,

respectively. Hence, we have {b0, B0, c
Q
0 , C

Q
0 } as additional hyperparameters for the user to choose.
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Algorithm 1 Gibbs sampling for mixture models

Inputs: {{yit, xit, zit}Ni=1}Tt=1 (data), θ0 (hyperparameters).
Outputs: θ′ (approximate sample from the parameter posterior).

During one iteration of the Gibbs sampler:

1: Update parameters given the cluster allocation.

(i: FM) Sample η′r|S1:N using (12) for r = 1, 2, . . . , R.

(i: DPM) Sample η′r|S1:N using (13) for r = 1, 2, . . . , R.

(ii) Sample α?,′|y, x, z,Q1:R, ω1:N , S1:N using (14) with α? = {α, β1:R}.

(iii) Sample Q′r|βs1:N , β′1:R, S1:N using (15) for r = 1, 2, . . . , R.

(iv) Sample σ2,′
e |y, x, z, α′, βs1:N , ω1:N using (16).

2: Sample allocations S′i|y, x, z, α′, β
s,′
i , β′1:R, Q

′
1:R, ω1:N using (17) for i = 1, 2, . . . , N .

3: Sample the random effects βs,′i |yi, xi, zi, α′, β′S′
i
, Q′S′

i
, ωi using (18) for i = 1, 2, . . . , N .

4: Sample the variance heterogeneity ω′i|y, x, z, α′, β
s,′
i , σ2,′

e using (19) for i = 1, 2, . . . , N .
5: [DPM] Sample the concentration parameter η′0 using (20).

Furthermore, we assign a prior for the concentration parameter in the DPM given by

η0 ∼ G(cη0 , C
η
0 ), (11)

for some hyperparameters cη0 and Cη0 .

3.2 Gibbs sampling

To sample from the posterior, we make use of blocked Gibbs sampling algorithms. For the DPM model,

we make use of the algorithm proposed by Gelman et al. [2013, p. 552], which is a truncated approxi-

mation using at most R clusters. The stick-breaking procedure is used to sample from the DPM in this

formulation.

For the FM, we make use of the Gibbs sampler proposed by Frühwirth-Schnatter [2006, p. 368], which

samples from the mixture using the conjugacy between the Dirichlet prior distribution and the multi-

nomial data. The remaining steps of the Gibbs sampler are identical and the full procedure performed

during one iteration of the sampler is presented in Algorithm 1. Note that the differences between the

two alternatives for modelling appears in Steps 1(i) and 5.

For the FM, we sample the mixture weights from the posterior given by the conjugacy property as

previously discussed. This results in the sampling scheme

η′1:R ∼ D(η0/R+ n1, η0/R+ n2, . . . , η0/R+ nR), (12)

where nr denotes the number of individuals in component r. The details are discussed by Gelman et al.

[2013, p. 534]. For the DPM model, we make use of the stick-breaking construction in (7) to generate

8



the weights η′1:R for the truncated model, i.e.,

η′r = Vr
∏
l<r

(1− Vl), Vr ∼ B

1 + nr, η0 +N −
r∑
j=1

nj

 , (13)

for r = 1, . . . , R and starting with a stick of unit length. The remaining parameters are sampled from

the conditional posteriors derived in the subsequent section.

3.3 Conditional posteriors

In this section, we outline the details for sampling from each of the conditional posteriors in Algorithm 1.

In Step 1(ii), we are required to sample from the conditional of α? , {α, β1, . . . , βR}, which are the fixed

effects and the mean of each component in the mixture (2). This essentially requires us to solve a

regression problem where the regressors are given by zi = (xi, ziDi1, . . . , ziDiK) with Dik = 1 if Si = k

and zero otherwise. Hence, we rewrite the regression model to obtain

yi = ziα
? + ẽi,

where ẽi ∼ N (0, Vi) with Vi = ziQSi(zi)
> + σ2

e/ωiIT . We can therefore compute the posterior us-

ing a standard Bayesian linear regression with known covariance and Gaussian prior for the regression

coefficients. The conditional posterior is given by

α? |y1:N , Q1:R, σ
2
e , ω1:N , S1:N ∼ Nd+Kp(α?; a?N , A?N ), (14)

where the mean and the covariance are given by

(A?N )
−1

=

N∑
i=1

(z?i )>V −1i z?i + (A?0)−1, a?N = A?N

(
N∑
i=1

(z?i )>V −1i yi + (A?0)−1a?0

)
.

In Step 1(iii), we sample the covariance of the mixture components. The posterior is given by the

conjugacy of the Wishart prior for the covariance matrix and a Gaussian likelihood. We can compute

the conditional posterior for r = 1, . . . , R by

Q−1r |β1:R, βs1:N , S1:N ∼ W
(
Q−1r ; cQr , C

Q
r

)
, (15)

where the sufficient statistics (assuming independence between B0 and CQr ) are given by

cQr = cQ0 +
nr
2
, CQr = CQ0 +

1

2

∑
{i:Si=r}

(βsi − βr)(βsi − βr)>,

9



where again nr denotes the number of individuals in component r, i.e.,

nr =

N∑
i=1

I(Si = r).

In Step 1(iv), we sample the variance of the noise σ2
e , which we assume to have an inverse-Gamma

prior distribution. As the likelihood is Gaussian, we obtain the conjugate posterior given by

σ2
e |y1:N , α, βs1:N , ω1:N ∼ G−1

(
σ2
e ; cek, C

e
k

)
, (16)

where the sufficient statistics are given by

cek = ce0 +
NT

2
, Cek = Ce0 +

1

2

N∑
i=1

ωi
(
yi − αxi − βsi zi

)2
.

Note that the data in this update is given by the scaled residuals for each of the individuals.

In Step 2, we update the allocation of each individual to a component by sampling Si for i = 1, . . . , N .

The latent variable Si is sampled from a multinomial distribution, where the probabilities reflect the

likelihood that individual i belongs to a certain component. That is, we sample

Si |α, β1:R, Q1:R, ωi, σ
2
e , yi ∼M(1, p1:R), (17)

where the probabilities are given by

pr =
ηrN

(
yi;αxi + βkzi,Wik

)∑R
l=1 ηlN

(
yi;αxi + βlzi,Wil

) , Wil = ziQl(zi)
> +

σ2
e

ωi
IT .

Note that the probabilities follow from the mixture model (2) directly. The intuition is that we are more

likely to select the component that best explains the data in terms of its contribution to the likelihood.

In Step 3, we sample the random effects for each individual from the component to which the indi-

vidual is assigned. The prior for each individual is given by p(βi) = N (βS′
i
, QS′

i
) and the likelihood is

Gaussian and given by

yi − αxi = ziβ
s
i +

σe√
wi
ei,

where ei is a standard Gaussian random variable. Note that this again is a Bayesian linear regression

with a Gaussian prior for the regression coefficient βsi , where the observations are given by yi − αxi and

the regressors are xi. In this case, the variance is known and the conditional posterior for i = 1, . . . , N is

βsi |yi, α, βSi
, QSi

, ωi ∼ N (βsi ; bsi , B
s
i ), (18)

10



where the sufficient statistics are given by

Bsi =

(
Q−1Si

+ (zi)
>zi

ωi
σ2
e

)−1
, bsi = Bsi

(
Q−1Si

βSi
+ (zi)

>(yi − αxi)
ωi
σ2
e

)
,

In Step 4, we sample the individual scaling of the noise of the observations. The derivation is similar

to for Step 1(iv), but here we have a Gamma distributed prior for ωi and a Gaussian likelihood. The

conditional posterior is given by

ωi |y1:N , α, βs1:N , σ2
e ∼ G (ωi; c

ω
k , C

ω
k ) , (19)

where the sufficient statistics are given by

cωk =
ν

2
+
T

2
, Cωk =

ν

2
+

1

2σ2
e

(
yi − αxi − βsi zi

)2
.

In Step 5, we sample the concentration parameter η0 for the DPM model using the Gamma prior in

(11). In this case, the conditional posterior [Gelman et al., 2013, p. 553] is given by

η′0 ∼ G

(
cη0 +N − 1, Cη0 −

R−1∑
r=1

log(1− Vr)

)
, (20)

where Vr is the fraction broken off during the stick-breaking in Step 1(i) of the procedure.

4 Numerical illustrations

In this section we present three numerical experiments to compare the difference of modelling hetero-

geneity in the random effects using the FM and DPM model. The aim is to compare the posterior

estimates and the mixing in the Markov chain created by the Gibbs sampler. The latter is important as

it determines the inefficiency of the sampling and the asymptotic variance of the posterior estimates.

4.1 Mixture of Gaussians

We begin with a simple mixture of Gaussians model [Escobar and West, 1995] to validate our imple-

mentation and present the setup that we use for the comparisons in this section. In this model, we

simplify the mixed effects model (1) such that yi = βsi , where the heterogeneity of the random effects

is modelled by (2). We generate T = 1 observations for N = 100 individuals using R = 3 components

and η1:3 = {0.3, 0.5, 0.2}, β1:3 = {−1, 0, 2} and Q1:3 = {0.22, 1, 0.052}. We carry out the inference using

Algorithm 1 with the settings presented in Appendix A.

The results are presented in Figure 1. In the upper part, we present the estimates of the posterior
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Figure 1: Upper: the posterior estimate from a finite mixture with 3 components (green), the FM
(orange) and DPM model (purple). The rug indicate the observed data. Lower: the number of active
clusters, where vertical dotted lines indicate the true number of clusters.
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of βsi using three different models: (i) a FM with the true number of components R = 3, (ii) a FM with

R = 20 components and (iii) a DPM model. We note that the three models give almost the same estimate

of the posterior, which indicates that the sparsity effect of the FM works satisfactory and empties the

extra components. This can be seen in the lower part of the same figure as less than 20 components

are active at any time in the FM. Furthermore, the DPM model use on average more components than

the FM. However, both models often make use of more components than in the model from which we

generated the data.

4.2 Mixed effects model with synthetic data

We now consider the complete mixed effects model (1) with heterogenity in the individual random effects

(2). We simulate 40 independent data sets using T = 100 observations in each while varying the number

of individuals N in {10, 20, 50, 100, 200, 500}. We make use of a mixture for the random effects with

R = 3 components and parameters

η1:3 = {0.4, 0.3, 0.3}, β1:3 = {2, 3,−2}, Q1:3 = {1, 0.2, 0.2}.

Moreover, we make use of σ2
e = 1, α = 2 and ω1:N ∼ |N (0, 1)| for the remaining parameters of the

model. We carry out the inference using Algorithm 1 with the settings presented in Appendix A.

We proceed by comparing the difference in the posterior estimates of the random effects. This is done

by computing the mean squared error (MSE) between the kernel density estimates (KDEs) of the sought

posterior using the FM and DPM model. Hence for each data set, we compute the KDEs of the posterior

estimates and compute the squared distance between them. In Table 1, we present the results which

indicate that the MSE (after an initial increase) tends to decrease when N grows. We therefore conclude

that the posterior estimates tend to become similar as the amount of data increases. Furthermore, we

present some graphical comparisons in Figure 2 for four Monte Carlo runs. We see that the posterior

estimates are similar most of the time, which is promising and validates the conclusion from the MSE

comparison.

We compare the mixing in the two models using the integrated autocorrelation time (IACT) also

known as the inefficiency factor for the Gibbs sampler applied to the two models. The IACT is estimated

by

ÎACT
(
ϕ(θKb:K)

)
= 1 + 2

L∑
l=1

ρ̂l
(
ϕ(θKb:K)

)
, (21)

where Kb denotes the number of iterations in the burn-in and K denotes the number of iterations of the

Gibbs sampler. Here ρ̂l(ϕ(θKb:K)) denotes the empirical autocorrelation at lag l of some test function ϕ
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Figure 2: Estimates of p(βsi |y) from a FM (orange) and DPM model (purple) for n =
{10, 20, 50, 100, 200, 500} (rows) and 4 independent Monte Carlo runs (columns).
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N10 N = 20 N = 50 N = 100 N = 200 N = 500

Log-MSE -6.1 -5.5 -5.1 -3.7 -4.1 -4.9

ÎACT(ψ1) FM 16 (27) 22 (48) 36 (75) 19 (61) 2 (5) 1 (1)
DPM 11 (25) 24 (34) 29 (45) 10 (46) 2 (4) 1 (1)

ÎACT(ψ2) FM 4 (1) 7 (3) 8 (4) 8 (3) 7 (1) 11 (5)
DPM 12 (10) 12 (10) 13 (9) 11 (10) 8 (5) 8 (4)

Table 1: The logarithm of the MSE of the estimates and the IACT of the log-likelihood and the number
of occupied components obtained in the FM and in a DPM model. The IACT values are the median
with the interquartile range in parenthesise from 40 Monte Carlo simulations.

that depends on θ. Here, we make use of the log-likelihood and the number of occupied components to

compute the IACT. The log-likelihood for the mixed effects model (1) is given by

ψ1(θ) =

N∑
i=1

T∑
t=1

logN
(
yit;αxit − βsi zit,

σ2
e

ωi

)
.

The number of occupied clusters is given by

ψ2(θ) =

R∑
k=1

I(nr > 0),

where nr denotes the number of individuals in component r. A small value of the IACT for both

quantities indicates that we obtain many uncorrelated samples from the sought posterior. This implies

that the chain is mixing well and that the asymptotic variance of the parameter estimates is rather

small. We choose L = max{3, b0.5(M −Mb)c} and make use of the IAT command in the R-package

LaplacesDemon [Hall, 2012] to compute the estimate of the IACT.

Table 1 also presents the median IACT with the interquartile range (the length between the first

and third quartiles) from 40 Monte Carlo runs over different data sets. We compare the IACT for the

FM and the DPM model for both the log-likelihood and the number of occupied components. We note

that there are no significant differences between the two models. Also, the IACT in the log-likelihood

seems to decrease with increasing N and the opposite holds for the mixing in the number of occupied

components.

4.3 Mixed effects model with sleep deprivation data

Finally, we consider the data set presented by Belenky et al. [2003] of the reaction times in a sleep

deprivation trial of N = 18 individuals. We present the data in Figure 3 from the test during T = 10

consecutive days during which the subjects are only allowed to sleep three hours every night. Moreover,

we present the linear regression for each individual indicated by the green lines. It seems that there
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are two different types of individuals in the data. In the first sub-group, the reaction time significantly

increases for each day of sleep deprivation, e.g., individuals 337, 308 and 350. In the second sub-group,

the lack of sleep does not seem to have a large impact on the reaction times, e.g., individual 351, 335 and

309. Hence, we can assume that the distribution of the random effects is possibly multi-modal, where

the modes represent these sub-groups.

We make use of the model discussed by Bates et al. [2015] to try to capture this effect. Let

{{yit}Ni=1}Tt=1 denote the reaction time in millisecond for individual i on day t. We assume that the

observations can be modelled by a mixed effects model given by

yit |α, βsi , σ2
e ∼ N

(
yit; (α0 + βsi0) + (α1 + βsi1)(t− 1),

σ2
e

ωi

)
. (22)

Furthermore, we assume that the individual random effects can be modelled using a mixture of Gaussians

(2). The model parameters are θ = {α0, α1, β1:R,0, β1:R,1, σ
2
e , ω1:N}. The interpretation of this model is

that the mean reaction time and change in reaction time for every day of sleep deprivation are given by

α0 and α1. The individual variations of these two quantities are captured by βsi0 and βsi1, respectively.

Figure 4 presents the estimates of the posterior of the fixed and random effects using the FM (orange)

and the DPM model (purple). From the upper part, we see the estimates of the mean reaction time

at the first day when the participants are well-rested together with the average increase for each day.

The estimates of the posterior means {α̂0, α̂1} are {237, 1.15} and {237, 1.07} for the FM and the DPM

model, respectively. This corresponds to that the mean reaction time the first day of the test is 237

milliseconds, which then increases by 1.15 or 1.07 milliseconds for every day of sleep deprivation.

From the lower part, we note that posterior estimate for βsi0 is uni-modal with some skewness to the

right. This indicates that most individuals have the same or an increased reaction time on the first day

compared with the corresponding fixed effect α0. However, from the posterior regarding βsi1, we note

that there seems to be three different sub-groups with: a small decrease, small increase and large increase

in reaction times for each day of sleep deprivation. This validates some of our initial findings that some

individuals have a small (or even negative) change in reaction time when sleep deprived. Finally, the

estimates of the random effects posterior means {β̂si0, β̂si1} are {9.50, 8.94} and {9.50, 9.09} for the FM

and the DPM model, respectively.

5 Conclusions

We have compared two different models for describing heterogeneity of the random effects in a mixed

effects model. The numerical illustrations show that the two approaches give similar estimates of the

posteriors using both synthetic and real-world data. This provides us with some promising indications

that the results from Rousseau and Mengersen [2011] holds for this type of models. However, more

16



0 2 4 6 8 10

10
0

30
0

50
0

re
ac

tio
n 

tim
e

308

0 2 4 6 8 10

10
0

30
0

50
0

re
ac

tio
n 

tim
e

309

0 2 4 6 8 10

10
0

30
0

50
0

re
ac

tio
n 

tim
e

310

0 2 4 6 8 10

10
0

30
0

50
0

re
ac

tio
n 

tim
e

330

0 2 4 6 8 10

10
0

30
0

50
0

re
ac

tio
n 

tim
e

331

0 2 4 6 8 10

10
0

30
0

50
0

day

re
ac

tio
n 

tim
e

332

0 2 4 6 8 10

10
0

30
0

50
0

333

0 2 4 6 8 10

10
0

30
0

50
0

334

0 2 4 6 8 10

10
0

30
0

50
0

335

0 2 4 6 8 10

10
0

30
0

50
0

337

0 2 4 6 8 10

10
0

30
0

50
0

349

0 2 4 6 8 10

10
0

30
0

50
0

day

350

0 2 4 6 8 10

10
0

30
0

50
0

351

0 2 4 6 8 10

10
0

30
0

50
0

352

0 2 4 6 8 10

10
0

30
0

50
0

369

0 2 4 6 8 10

10
0

30
0

50
0

370

0 2 4 6 8 10

10
0

30
0

50
0

371

0 2 4 6 8 10

10
0

30
0

50
0

day

372

Figure 3: The reaction time in milliseconds for N = 18 individuals during T = 10 consecutive days with
only three hours of sleep per night. The solid lines indicate the best linear fit for each individual and
the dots indicate the data points.
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theoretical work is required to generalise the convergence results to this type of model and priors.

Another important future work is to apply this approach for more realistic real-world models as

discussed by e.g., Burda and Harding [2013]. It would also be useful to conduct more extensive simulations

to compare the mixing in the Markov chain to see if the approximate FM can help mitigating the problems

with poor mixing as discussed by Hastie et al. [2015].

The source code and data for the numerical illustrations are available from https://github.com/

compops/panel-dpm2016/.
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A Implementation details

In all illustrations, we use K = 10, 000 iterations in the Gibbs sampler and discard the first Kb = 2, 500

iterations as burn-in.

A.1 Mixture of Gaussians

We use R = 20 components in the FM with η0,r = 1/R for r = 1, . . . , R as the concentration parameter

to promote sparsity as suggested by Ishwaran and Zarepour [2002]. Furthermore, we use η = 1 for the

finite mixture with the true number of components R = 3 so that all components are occupied. For the

prior of η0 in the DPM model, we use cηo = 1 and Cηo = 0.5 as the hyperparameters. The remaining

hyperparameters for the priors are selected as b0 = 0, B0 = 0.22, cQ0 = 1 and cQ0 = 1.

A.2 Mixed effects model with synthetic data

We use R = 20 components in the FM with η0,r = 1/R for r = 1, . . . , R to promote sparsity as in the

previous example. For the prior of η0 in the DPM model, we use the hyperparameters cη0 = 0.01 and

Cη0 = 0.01. We make use of the mean estimate from the linear regressions of each individual to select a?0.

Hence, the first element corresponds to the mean intercept and the remaining R elements correspond

to the mean slope from the N linear regression estimates. We make use of A?0 = Id+Kp as the prior

covariance of α?. Furthermore, we select cQ0 = 10, CQ0 = 1, ce0 = 0, Ce0 = 0 and ν = 5.

A.3 Mixed effects model with sleep deprivation data

We use R = 20 components in the FM with η0,r = 1/R for r = 1, . . . , R to promote sparsity as in

the previous example. For the prior of η0 in the DPM model, we use the hyperparameters cη0 = 0.01

and Cη0 = 0.01. We make use of the same approach as in the previous illustration to choose a?0 =

{251.4, 10.5, 0, . . . , 0} and select A?0 = diag{0.01, 0.005, 0.02, . . . , 0.02}. Furthermore, we select cQ0 = 10,

CQ0 = 0.05I2, ce0 = 1, Ce0 = 2 and ν = 5.
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