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ABSTRACT

In this paper we propose a new type of particle smoother
with linear computational complexity. The smoother is based
on running a sequential Monte Carlo sampler backward in
time after an initial forward filtering pass. While this in-
troduces dependencies among the backward trajectories we
show through simulation studies that the new smoother can
outperform existing forward-backward particle smoothers
when targeting the marginal smoothing densities.

Index Terms— Sequential Monte Carlo, Particle filter,
Particle smoother, Forward-backward algorithms.

1. INTRODUCTION

Consider a general state space model (SSM)

x0 ∼ µ(x0) (1a)
xt|xt−1 ∼ f(xt|xt−1) (1b)
yt|xt ∼ g(yt|xt) (1c)

where xt ∈ X and yt ∈ Y denote the latent state and is the
observation at time t, respectively. We are interested in infer-
ring the marginal smoothing distributions p(xt|y1:T ), where
y1:k = {y1, y2, ..., yk} and T is the number of time steps.
To this end, we consider forward-backward particle smooth-
ing algorithms. These algorithms are based on running a
backward smoothing pass after an initial forward particle
filter, providing approximations of the filtering distributions
p(xt|y1:t). Several variants of backward smoothers have been
proposed in the literature, see e.g. Lindsten and Schön [1] for
an extensive survey. Our contribution in this work is to show
how the marginal smoothing distributions can be targeted
using Sequential Monte Carlo (SMC) in a backward smooth-
ing pass with linear computational complexity. Resampling
operations enable high computational efficiency by focusing
the computational effort on the most likely backward particle
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trajectories. This is in stark contrast to previous forward-
backward particle smoothers which all generate independent
backward trajectories.

There are several previous smoothing algorithms related
to our work. The fixed-lag smoother [2] approximates the
marginal smoothing distributions at time t, by the forward
filtering particles at time t + ∆, relying on the fact that
p(xt|y1:T ) ≈ p(xt|y1:min(t+∆,T )) for some large enough ∆.
While simple to implement, the choice of the lag ∆ is diffi-
cult to tune and for poorly mixing models ∆ can be so large
that the particle approximation degenerates. The Forward
Filter Backward Smoothing (FFBSm) algorithm introduced
by Doucet et al. [3] circumvents this drawback by adding
a backward smoothing pass to update the particle weights
from the forward filter. However, this comes at the cost of
a quadratic computational complexity, O(N2), where N is
the number of filter particles. Godsill et al. [4] proposed the
Forward Filtering Backward Simulation (FFBSi) algorithm
which targets the joint smoothing density by independently
sampling M new particle trajectories backwards in time. The
original FFBSi algorithm exhibits a complexity of O(NM),
but have recently been improved to linear complexity O(N),
by considering rejection sampling [5, 6] and Markov chain
Monte Carlo (MCMC) based backward simulators [7, 8].

Based on simulation studies we show that the proposed
particle smoother can outperform existing forward-backward
smoothers.

2. BACKWARD SMC SMOOTHER

Consider the marginal smoothing distribution at time t

p(xt|y1:T ) =

∫
p(xt|xt+1, y1:t)p(xt+1|y1:T )dxt+1

=

∫
p(xt|y1:t)f(xt+1|xt)

p(xt+1|y1:t)
p(xt+1|y1:T )dxt+1

=

∫
p(xt|y1:t)g(yt+1|xt+1)f(xt+1|xt)p(xt+1|y1:T )

p(xt+1|y1:t+1)p(yt+1|y1:t)
dxt+1

(2)



where we used the expression

p(xt+1|y1:t) =
p(xt+1|y1:t+1)p(yt+1|y1:t)

g(yt+1|xt+1)
(3)

to establish the last equality. An initial forward filtering
sweep generates the weighted particle systems {xit, wit}Ni=1

for t = 1, . . . , T providing an empirical point mass approxi-
mation of the filtering distribution

p̂(xt|y1:t) =

N∑
i=1

witδxi
t
(xt) (4)

where δx0(x) denotes a Dirac delta mass located at x0. Sub-
stituting this empirical approximation obtained from the
forward filter into (2) also provides an expression for the
marginal smoothing distribution,

p̂(xt|y1:T ) =

N∑
i=1

witz
i
tδxi

t
(xt) (5a)

zit =

∫
g(yt+1|xt+1)f(xt+1|xit)p(xt+1|y1:T )

p(xt+1|y1:t+1)p(yt+1|y1:t)
dxt+1 (5b)

To compute approximations of the marginal smoothing
distribution (5), we proceed in a recursive fashion back-
ward in time. The marginal smoothing distribution at time
T can trivially be estimated from the weighted particle sys-
tem, {xiT , wiT }Ni=1, targeting the filtering distribution at time
T . To compute the marginal smoothing distributions for
t = T − 1, . . . , 1 we assume that there exists a weighted
particle system {x̃jt+1, w̃

j
t+1}Mj=1 targeting p(xt+1|y1:T ). For

t = T − 1 this system can be obtained by resampling M
particles from the N filter particles at time T . By substituting
{x̃jt+1, w̃

j
t+1}Mj=1 for p(xt+1|y1:T ) in the expression for the

marginal smoothing distribution (5) we obtain

p̂(xt|y1:T ) ∝
N∑
i=1

M∑
j=1

witw̃
j
t+1

g(yt+1|x̃jt+1)f(x̃jt+1|xit)
p(x̃jt+1|y1:t+1)

δxi
t
(xt)

(6)

Assuming that the particle system {x̃jt+1, w̃
j
t+1}Mj=1 at time

t + 1 is in the support of the particle system obtained in the
forward filtering pass {xit+1, w

i
t+1}Ni=1 we can use the em-

pirical approximation provided by that particle system as an
approximation for p(x̃jt+1|y1:t+1), thus

p̂(x̃jt+1|y1:t+1) =

{
wit+1 if x̃jt+1 = xit+1

0 if x̃jt+1 6= xit+1

(7)

We propose to target the approximation of the marginal
smoothing densities given by plugging in (7) into (6) using
importance sampling. To this end we consider an approach in
the same spirit as the auxiliary particle filter [9].

Algorithm 1: Backward SMC smoother

Input : Forward filtering particle systems {xit, wit}Ni=1

for t = 1, . . . , T.
Output: Backward particle systems {x̃jt , w̃

j
t}Mj=1 for

t = 1, . . . , T .

1 Sample {bmT }Mm=1 ∼ Cat
(
{wiT }Ni=1

)
2 Set X̃m

T = X
bmT
T for m = 1, . . . , M

3 for t = T − 1, . . . , 1 do
4 for j = 1, . . . , M do
5 Sample ajt ∼ Cat

(
{wit}Ni=1

)
6 Sample bjt ∼ Cat

(
{ w̃

k
t+1g(yt+1|x̃kt

t+1)

p̂(x̃
kt
t+1|y1:t+1)

}Mk=1

)
7 Set x̃jt = x

ajt
t

8 Set w̃jt = f(X̃
bjt
t+1|X̃

j
t )

9 end

10 Set w̃jt =
w̃j

t∑M
j=1 w̃

j
t

for j = 1, . . . , M

11 end

Let us introduce two auxiliary uniformly distributed ran-
dom variables at and bt, which are defined on the index sets
{1, . . . , N} and {1, . . . , M}, respectively. Let πt be a prob-
ability density defined on X × {1, . . . , N} × {1, . . . , M}
according to

πt(xt, at, bt) ∝ watt w̃
bt
t+1

g(yt+1|x̃btt+1)f(x̃btt+1|x
at
t )

p̂(x̃btt+1|y1:t+1)
δxat

t
(xt)

(8)

Marginalizing this distribution over at and bt gives the ex-
pression for the marginal smoothing distribution given in (6).
Targeting (8) with M samples from the proposal distribution
q(xt, at, bt) = watt q(bt|xat) gives a weighted particle system
{x̃jt , w̃

j
t}Mj=1 targeting (6) with weights

w̃jt ∝
w̃btt+1g(yt+1|x̃btt+1)f(x̃btt+1|x

at
t )

p̂(x̃btt+1|y1:t+1)q(bt|xat)
(9)

The optimal proposal distribution for bt in the sense of min-

imal variance is q(bt|xat) =
w̃

bt
t+1g(yt+1|x̃bt

t+1)f(x̃
bt
t+1|x

at
t )

p̂(x̃
bt
t+1|y1:t+1)

.

However, to sample from this proposal for each sampled
index ajt results in an algorithm with complexity O(NM).
If we instead sample bt independently from at using e.g.

q(bt) =
w̃

bt
t+1g(yt+1|x̃bt

t+1)

p̂(x̃
bt
t+1|y1:t+1)

, the computational complexity is

reduced to O(N + M). For a bootstrap particle filter [10]
this choice leads to a particularly simple proposal distribution
q(bt) = w̃btt+1 as wit+1 = g(yt+1|xit+1).

The variance can also be reduced by considering strat-
ification in the auxiliary index spaces [11], commonly re-
ferred to as stratified resampling. The above development



is summarized in Algorithm 1, where Cat({pi}ni=1) denotes
the categorical distribution on {1, . . . , N} with probabilities
{pi}Ni=1.

3. NUMERICAL ILLUSTRATION

In this section the proposed methods are compared to the
fixed-lag smoother [2] (FS) using a lag of 5, FFBSi [4], a
recent version of RS-FFBSi [6] with a fixed number of re-
jections sampling tests before an exhaustive evaluation of the
smoothing weights (Rmax = M/5 was used to generate the
results presented here) and the MH-FFBSi method [8] using
K = 10 MCMC step for each particle update. All smoothers
are based on a standard particle filter (PF) sampling from the
state space dynamics f(xt|xt−1) and resampling when the ef-
fective sample size (ESS) is less than 2

3N . The reported run-
times were generated using MATLAB and includes the run-
time of both the forward filter and the backward smoother.

3.1. Linear Gaussian SSM

Consider a generic ten dimensional linear Gaussian SSM

xt+1 = Axt + wt, wt ∼ N (0, Q) (10a)
yt = Cxt + vt, vt ∼ N (0, R) (10b)

For this model 50 independent realizations of A and C were
generated using the MATLAB command drss(10,10,0),
and Q and R were set to the identity matrix. For each model
realization, 10 datasets each of length T = 100 were consid-
ered. Table 1 show runtimes and average mean squared error
(MSE) compared to the Rauch-Tung-Striebel smoother [12]
solution forN = 200 andM = 100. For this model the fixed-
lag smoother performs worse than the other smoothers. Due
to the high dimensionality of the model, the rejection sam-
pling based ARS-FFBSi [6] smoother performs on par with
the FFBSi smoother in terms of efficiency. The MH-FFBSi
algorithm is approximately five times as fast as the FFBSi
smoother, yielding similar MSE. The proposed smoother per-
forms similarly to previous forward-backward smoothers in
terms of MSE, but at a lower computational cost. For these
parameter settings about seventeen times faster than the FF-
BSi algorithm and about four times faster than MH-FFBSi.

3.2. Nonlinear model

Consider the nonlinear radar-type tracking model given in [8]


xt
yt
ẋt
ẏt

 =

[
I2 I2
02 I2

]
xt−1

yt−1

ẋt−1

ẏt−1

+ wt (11a)

[
bt
rt

]
=

[
arctan( ytxt

)√
x2
t + y2

t

]
+ vt (11b)

where I2 and 02 denote the 2 × 2 identity matrix and 2 × 2
zero matrix, respectively. The random variables wt and vt are
independent and zero-mean Gaussian distributed with covari-
ance matrices Q and R respectively

Q =

[
1
3I2

1
2I2

1
2I2 I2

]
R =

[
σ2
B 0
0 σ2

R

]
where σ2

B =
(
π

720

)2
and σ2

R = 0.1. For this model we
averaged the results over 100 data sets where each dataset
was generated with T = 300. Table 2 presents the average
MSE and runtimes for different settings of N and M . For
the same number of particles in the forward and backward
sweep the MH-FFBSi algorithm performs better than the pro-
posed smoother, but at a higher computational cost. When
using twice as many particles (N = 2000,M = 400) the
proposed smoother gives the same MSE with approximately
half the runtime compared to the MH-FFBSi algorithm with
(N = 1000,M = 200) particles.

4. DISCUSSION

Computational complexity - The proposed algorithm in gen-
eral requires less computations per sampled backward trajec-
tory than previous smoothers. Apart from the cost of sam-
pling from the categorical distributions, a maximum of two
function evaluations have to be performed for each particle at
each time step. When the forward filter corresponds to a boot-
strap particle filter the proposed algorithm is even more effi-
cient, only requiring one function evaluation per particle per
time step. In contrast, the recently proposed MH-FFBSi algo-
rithm, always performsK iterations per particle per time step,
each of which entails one new function evaluation, where K
in the range of 3 − 20 often yields good results in practice.
The proposed smoother thus requires roughly (K − 2)MT
less functions evaluations then the MH-FFBSi algorithm for
the same number of backward particles. However, a draw-
back with the proposed smoother is that the resampling of
the backward trajectories can limit the efficiency of a parallel
implementation, similar to forward SMC filtering, while for
other particle smoothers the backward pass is often straight-
forward to parallelise.

Empirical Convergence - In numerical experiments we
have found that the proposed SMC smoother exhibits a non-
vanishing bias when increasing the number of forward and
backward particles. The bias tend to be in the same order as
for the MH-FFBSi algorithm with K ≈ 3−5. To remove any
remaining bias for a large number of particles, the MCMC
smoother proposed by Dubarry and Douc [7] could be used in
a post process step. To investigate other methods to remove
the bias is an interesting venue for future work.

Future work - Recent forward-backward particle smoothers
have enabled new particles to be sampled in the backward
pass, not in the support of the forward filter approximations.



FS [2] FFBSm [3] FFBSi [4] ARS-FFBSi [6] MH-FFBSi [8] Algorithm 1
MSE 0.75 0.66 0.66 0.66 0.66 0.66

Runtime 0.06 6.90 2.02 1.75 0.38 0.10

Table 1. Average MSE and runtime for the ten dimensional linear Gaussian model (10), N = 200,M = 100

MH-FFBSi [8] MH-FFBSi [8] MH-FFBSi [8] Algorithm 1 Algorithm 1 Algorithm 1
N = 1000 N = 2000 N = 4000 N = 1000 N = 2000 N = 4000
M = 200 M = 400 M = 800 M = 200 M = 400 M = 800

MSE 2.8 2.4 2.3 3.4 2.8 2.5
Runtime 1.15 1.43 2.02 0.39 0.53 0.85

Table 2. Average MSE and runtimes for the nonlinear tracking model (11). Columns are sorted according to MSE.

One way to extend the proposed smoother to sample new par-
ticle positions in the backward pass is to approximate the fil-
tering distribution at time t in the expression for the marginal
smoothing distribution (2) with the propagated empirical fil-
tering distribution from t − 1, similar to [8]. To approximate
the denominator in the backward kernel, the approxima-
tion, p(x̃jt+1|y1:t) =

∑N
k=1 w

k
t f(x̃jt+1|xkt )δxk

t
(xt), can be

used. However, this results in an algorithm with quadratic
computational complexity. To derive a backward proposing
SMC smoother of linear complexity it would be interesting
to investigate methods to approximate p(x̃jt+1|y1:t+1) using
for example kernel density estimation based on the forward
particle system.

Many extensions similar to those developed for forward
SMC filters could also be considered for the proposed back-
ward SMC sampler. For example resample-move [13] algo-
rithms, adaptive resampling and parallel resampling [14]. In-
vestigating such extensions in the context of backward simu-
lation presents several interesting venues for future work.
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