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Abstract

We propose an improved proposal distribution in the Particle Metropolis-
Hastings (PMH) algorithm for Bayesian parameter inference in nonlinear
state space models. This proposal incorporates second-order information
about the parameter posterior distribution, which can be extracted from
the particle filter already used within the PMH algorithm. The added
information makes the proposal scale-invariant, simpler to tune and can
possibly also shorten the burn-in phase. The proposed algorithm has a
computational cost which is proportional to the number of particles, i.e.
the same as the original marginal PMH algorithm. Finally, we provide
two numerical examples that illustrates some of the possible benefits of
adding the second-order information.

1 Introduction

We are interested in Bayesian parameter inference in nonlinear state space
models (SSM). An SSM with latent states x0:T , {xt}Tt=0 and measurements
y1:T , {yt}Tt=1 is defined as

xt|xt−1 ∼ fθ(xt|xt−1), (1a)

yt|xt ∼ gθ(yt|xt), (1b)

where fθ(·) and gθ(·) denote known distributions parame- trised by the unknown
static parameter vector θ ∈ Θ ⊆ Rd. We also assume that the initial state is
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distributed according to x0 ∼ µ(x0). In Bayesian inference, we are interested in
computing the parameter posterior,

p(θ|y1:T ) =
pθ(y1:T )p(θ)

p(y1:T )
, (2)

where p(θ) denotes the prior distribution of the parameter. Here, the likelihood
function can be expressed as

pθ(y1:T ) = p(y1:T |θ) =

T∏
t=1

pθ(yt|y1:t−1). (3)

For nonlinear and/or non-Gaussian models, the one-step predictive distribu-
tion pθ(yt|y1:t−1) is intractable and therefore the parameter posterior is also
intractable. However, these quantities can be estimated e.g. using Sequential
Monte Carlo (SMC) [8], Markov chain Monte Carlo (MCMC) [25] or a combina-
tion of the two. The latter solution is referred to as particle MCMC (PMCMC)
[2, 1] and enables routine Bayesian parameter inference in general SSMs (1).

Earlier work in the area of Bayesian parameter inference includes e.g. [3], [18]
and [21]. PMCMC has earlier been used for nonlinear inference in e.g. finance
[23], social network analysis [9] and system identification [4]. In the latter, we
propose a method using Particle Metropolis-Hastings (PMH) with a proposal
based on first-order information about the posterior.

In this work, we improve the performance of the PMH algorithm by also
incorporating second-order information into the proposal. This draws upon
results presented by [11] for the Metropolis-Hastings (MH) algorithm and can
be seen as a particle analogue to the manifold Metropolis Adjusted Langevin
Algorithm (mMALA).

By including the Hessian, the proposal is given the ability to automati-
cally adjust the step length during the run. This has the benefit of shortening
the burn-in period and simplifies the tedious tuning, as the proposal is scale-
invariant. Note, that this is similar to a Newton-based optimisation algorithm,
which also enjoys the same invariance.

Another improvement is the use of particle smoothers with linear complexity
for estimating the first-order and second-order information. This greatly de-
creases the computational cost of the algorithm compared to our earlier work,
which has a quadratic complexity in the number of particles. The proposed
method is illustrated on two SSMs, which shows some of the possible benefits
of using the second-order proposal.



2 Constructing second-order proposals

As previously stated, direct computation of the parameter posterior distribution
(2) is often intractable. Instead, we make use of the Metropolis-Hastings (MH)
algorithm [16, 12, 25] to sample from the posterior by the use of a Markov
chain with certain properties. The chain is constructed so that its stationary
distribution is the posterior p(θ|y1:T ), from which we would like to sample.

The (ideal) MH algorithm is an iterative procedure where two steps are
carried out during each iteration: (i) sample parameters from a proposal dis-
tribution, θ′′ ∼ q(θ′′|θ′), where θ′ denotes the parameters from the previous
state of the Markov chain, and (ii) accept or reject the new parameters with the
acceptance probability,

α(θ′′, θ′) = 1 ∧ p(θ
′′)

p(θ′)

pθ′′(y1:T )

pθ′(y1:T )

q(θ′|θ′′)
q(θ′′|θ′)

, (4)

where we introduce the operator a ∧ b = min{a, b}.
Recall that the likelihood pθ(y1:T ) is intractable for the general SSM (1). In

Section 4, we discuss how to solve this particular problem, while still making
sure that the Markov chain converges to the parameter posterior. This is done
by replacing the intractable likelihood with an unbiased estimate resulting in
an exact approximation of the MH algorithm [1].

In this section, we construct a proposal that makes use of the first-order
and second-order information about the posterior. After this, we discuss how to
construct estimators for the required intractable quantities using SMC methods.

2.1 Laplace approximation of the log-posterior distribu-
tion

A proposal distribution can be constructed by using a Laplace approximation
[25] of the log-posterior distribution. Consider a second-order Taylor expansion
of log p(θ′′|y1:T ) around θ′,

log p(θ′′|y1:T ) ≈ log p(θ′|y1:T )

+ (θ′′ − θ′)>∇ log p(θ|y1:T )
∣∣∣
θ=θ′

+
1

2
(θ′′ − θ′)>∇2 log p(θ|y1:T )

∣∣∣
θ=θ′

(θ′′ − θ′).

By taking the exponential of both sides and completing the square, we obtain

p(θ′′|y1:T ) = N (θ′′; θ′ + GT (θ′),WT (θ′)), with

W−1T (θ′) , IT (θ′)−∇2 log π(θ)
∣∣
θ=θ′

,

GT (θ′) ,WT (θ′)
[
ST (θ′) +∇ log π(θ)

∣∣
θ=θ′

]
,

which is discussed in e.g. [25]. Here, we introduced the notation ST (θ′) ,
∇ log pθ(y1:T )|θ=θ′ and IT (θ′) , −∇2 log pθ(y1:T )|θ=θ′ for the gradient and the
negative Hessian of the log-likelihood, respectively.



In [25], the authors discard the second-order informationWT (θ) from the ex-
pression by replacing it with a constant diagonal d×d-matrix. Here, we instead
keep the second-order information and guided by the Laplace approximation,
suggest the use of the proposal,

q
(
θ′′|θ′,ST (θ′), IT (θ′)

)
= N

(
θ′′; θ′ +

Γ2

2
GT (θ′),Γ2WT (θ′)

)
, (5)

where Γ = diag(γ) denotes a diagonal matrix with γ being a scalar or a d-vector
with step-length(s). We use the former in the second-order proposal because
of its scale-invariance property. In the zeroth-order and first-order proposals
(introduced below) a vector is often needed to use different step-lengths for
each parameter.

2.2 Properties of the proposal distribution

We refer to the expression in (5) as the second-order proposal, since it makes
use of both the gradient and the Hessian in proposing new parameters. If the
Hessian of the log-posterior is replaced with a d×d-identity matrix,WT (θ) ≡ Id,
a first-order proposal is obtained. Lastly, if the gradient is removed as well,
GT (θ) ≡ 0, a zeroth-order proposal is obtained. This proposal distribution is
equivalent to a Gaussian random walk proposal, which is a common standard
choice when using the MH algorithm.

We note in the passing that the second-order proposal has a statistical and
geometrical interpretation. The gradient and the negative Hessian of the log-
likelihood are often referred to as the score function and the Fisher information
matrix, respectively. From such a perspective, the proposal in (5) is shown in
[11] to be a random walk on a Riemann manifold with constant curvature using
the information matrix as the metric.

The convergence of the first-order proposal is analysed by [26] and under
certain assumptions it require O(d−1/3) steps to converge to the stationary
distribution. This is compared with O(d) steps for the zeroth-order proposal.
Therefore the first-order proposal is more efficient as the number of parameters d
increases. To the best of the authors’ knowledge, no analysis has been published
for the second-order proposal. However, numerical comparisons are presented
in Section 5 which could support that the properties of the first-order proposal
also carries over the the second-order proposal.

Note that, the MH algorithm with the second-order proposal depends on the
likelihood, gradient and negative Hessian, which for the general SSM (1) are
intractable. Therefore, we now continue with discussing SMC methods which
can be used to solve this problem.



3 Estimating second-order proposals

SMC is a family of algorithms used to sample from a sequence of probability
distributions. A typical application of SMC methods is to sample from the
filtering and smoothing distribution in SSMs. In this setting, we refer to SMC
methods as particle filters and particle smoothers, respectively. Here, we limit
ourselves to the auxiliary particle filter (APF) [22] and the fixed-lag (FL) particle
smoother [14]. For more information regarding SMC, see e.g. [8] and [6].

3.1 Auxiliary particle filter

We use the APF to compute an estimate of the likelihood and the latent states
of the SSM (1). An APF targeting the smoothing distribution pθ(x1:t|y1:t)
generates a particle system using N particles {x(i)1:t, w

(i)
t }Ni=1. This can be used

to estimate the smoothing distribution,

p̂θ(dx1:t|y1:t) ,
N∑
i=1

w
(i)
t∑N

k=1 w
(k)
t

δ
x
(i)
1:t

(dx1:t), (6)

where w
(i)
t and x

(i)
1:t denote the unnormalised weight and the state trajectory

of particle i from time 1 to t, respectively. Here, δz(dx1:t) denotes the Dirac
measure in the point z. The particle system is generated sequentially by the
APF in two steps: (i) the sampling/propagation step, and (ii) the weighting
step.

In the first step, the particle system from the previous time step t − 1 is
resampled and propagated to generate an unweighted particle system at time t.
This can be seen as sampling from a proposal kernel,

{a(i)t , x
(i)
t } ∼

wt−1∑N
k=1 w

(k)
t−1

Rθ(xt|xatt−1, yt), (7)

where we append the sampled particle to the trajectory by x
(i)
1:t = {xa

(i)
t

1:t−1, x
(i)
t }.

Here, a
(i)
t denotes the ancestor index, i.e. the index of the particle at time

t − 1, from which x
(i)
t originates. Furthermore, Rθ(xt|xatt−1, yt) denotes some

propagation kernel from which we can sample a new particle at time t given the
ancestor particle at time t− 1.

In the second step, the particle weights are computed as

w
(i)
t = Wθ(x

(i)
t , x

a
(i)
t
t−1) ,

gθ(yt|x(i)t )fθ(x
(i)
t |x

a
(i)
t
t−1)

Rθ

(
x
(i)
t |x

a
(i)
t
t−1, yt

) . (8)

Hence, the particle system at time t can be estimated recursively using the two
steps in the APF.



3.2 Estimation of the likelihood

The likelihood for the general SSM (1) can be estimated using the particle
systems obtained from the APF. This is done by first writing the one-step
predictive density as

pθ(yt|y1:t−1) =

∫
gθ(yt|xt)fθ(xt|xt−1)pθ(xt−1|y1:t−1) dxt−1:t

=

∫
Wθ(xt, xt−1)Rθ(xt|xt−1, yt)pθ(xt−1|y1:t−1) dxt−1:t,

where we have multiplied and divided with the propagation kernel Rθ(·). To
approximate the integral, we note that the (unweighted) particle pairs {xatt−1, xt}
are approximately drawn from Rθ(xt|xt−1, yt)pθ(xt−1|y1:t−1). Consequently, we
obtain the Monte Carlo approximation

pθ(yt|y1:t−1) ≈ 1

N

N∑
i=1

Wθ(x
(i)
t , x

a
(i)
t
t−1) =

1

N

N∑
i=1

w
(i)
t .

By inserting this approximation into (3) we obtain the particle estimate of the
likelihood,

pθ(y1:T ) =

T∏
t=1

(
1

N

N∑
i=1

w
(i)
t

)
. (9)

This likelihood estimator has been studied extensively in the SMC literature.
The estimator is consistent and unbiased, see e.g. [23] and Proposition 7.4.1
in [5]. Remember, that the unbiasedness is an essential property for the exact
approximation of the MH algorithm and therefore also for our algorithm.

3.3 Estimation of the log-likelihood gradient

To estimate the gradient of the log-likelihood ST (θ) using SMC methods, we
employ Fisher’s identity [10, 3, 19],

∇ log pθ(y1:T ) = Eθ
[
∇ log pθ(x1:T , y1:T )

∣∣∣y1:T ] . (10)

For the general SSM (1), we have

pθ(x1:T , y1:T ) = µ(x0)

T∏
t=1

fθ(xt|xt−1)gθ(yt|xt), (11)

which inserted into (10) results in

∇ log pθ(y1:T ) =

T∑
t=1

∫
ξθ(xt−1:t)pθ(xt−1:t|y1:T ) dxt:t−1,

ξθ(xt−1:t) = ∇ log fθ(xt|xt−1) +∇ log gθ(yt|xt).



Hence,∇ log pθ(y1:T ) depends on the intractable two-step pθ(xt−1:t|y1:T ) smooth-
ing distribution.

In [24], this quantity is computed using the APF directly or by using a
forward smoother (FS) [7]. The drawback of the first approach is poor accuracy
due to particle degeneracy. The second approach is computationally costly
as the FS algorithm has a computational complexity of O(N2T ) compared to
O(NT ) for the APF.

In this paper, we instead make use of the FL-smoother [14, 20] which has
the same computational cost as the APF, but better accuracy. This follows
from that the FL-smoother experience less problems with particle degeneracy
compared to the APF. The FL-smoother relies on the assumption that the
SSM (1) is mixing fast. That is, we can use the approximation pθ(xt|y1:T ) ≈
pθ(xt|y1:κt), with κt = min{t + ∆, T} and where ∆ denotes some lag. Hence,
the smoothing distribution of xt is not strongly influenced by measurements
obtained after some time κt.

By marginalisation of (6) over x1:t−2 and xt+1:κt , we obtain the empirical
two-step smoothing distribution as

p̂θ(dxt−1:t|y1:κt) ,
N∑
i=1

w(i)
κt δx̃(i)

κt,t−1:t
( dxt−1:t), (12)

where we use the notation x̃
(i)
κt,t = x

a
(i)
κt,t

t . Here, we let a
(i)
κt,t denote the ancestor

index of particle x
(i)
κt at time t. Inserting (11) and (12) into (10) gives the

estimate of the gradient

ŜT (θ) =

T∑
t=1

N∑
i=1

w(i)
κt ξθ(x̃

(i)
κt,t, x̃

(i)
κt,t−1). (13)

In [20], the statistical properties of the FL-smoother are analysed. It is
shown that the lag ∆? ∝ log T minimises the mean squared error of the state
estimates. It is also shown that the resulting estimates are biased and this could
be a significant problem in many applications. However in our setting, the bias
is later compensated for by the accept/reject-procedure in the MH algorithm
and the invariance property is retained.

3.4 Estimation of the negative log-likelihood Hessian

The negative Hessian IT (θ) of the log-likelihood can be estimated using SMC
methods in combination with Louis’ identity [15, 3],

−∇2 log pθ(y1:T ) = [∇ log pθ(y1:T )]2

− Eθ
[
[∇ log pθ(x1:T , y1:T )]2|y1:T

]
− Eθ

[
∇2 log pθ(x1:T , y1:T )|y1:T

]
, (14)



where we introduce v2 = vv> for some vector v. Here, we make use of the APF
based smoother proposed in [24] for estimating IT (θ). Here, the FL-smoother
cannot be readily used for this problem as it cannot be used to estimate the
required distributions. Instead, we can compute the negative Hessian using a
recursive scheme from t = 1 to T of the form

β̂θ(x
(i)
t ) = β̂θ(x̃

(i)
t,t−1) + ξθ(x

(i)
t , x̃

(i)
t,t−1), (15a)

η̂θ(x
(i)
t ) = η̂θ(x̃

(i)
t,t−1) + ζθ(x

(i)
t , x̃

(i)
t,t−1), (15b)

where we introduce the quantity

ζθ(xt−1:t) = ∇2 [log fθ(xt|xt−1) + log gθ(yt|xt)] .

The estimate of the negative Hessian is given by

ÎT (θ) =
[
ŜT (θ)

]2
−

N∑
i=1

w
(i)
t

[
β̂θ(x

(i)
t )2 + η̂θ(x

(i)
t )
]
. (16)

3.5 SMC algorithm

In Algorithm 1, we present the complete algorithm that combines the APF and
the FL-smoother to compute estimates of the gradient and negative Hessian.
The primary outputs from this algorithm are the estimates of the likelihood,
the gradient and the negative Hessian given a parameter θ.

In our experience, the off-diagonal elements in the information matrix are of-
ten difficult to estimate with good accuracy. Therefore, we only use the diagonal
elements of the information matrix in the remainder of this work. This retains
the property that the second-order proposal is scale-invariant, but without tak-
ing the curvature into account. Also, this does not allow for any covariation
in the parameters proposed in the algorithm. That is, the parameters are as-
sumed to be independent, which could lead to poor exploration of non-isotropic
posteriors.

4 Particle Metropolis-Hastings

From the previous development, we know how to estimate the various quantities
needed for using the MH algorithm with the second-order proposal. Recall, that
the exact approximation of the MH algorithm guarantees that the stationary
distribution of the Markov chain remains the parameter posterior, see [1]. This
result only requires that the log-likelihood estimate is unbiased.

In fact, we are allowed to use the entire particle system in the proposal, see
[4]. This opens up for using the second-order proposal, since we have demon-
strated that the gradient and Hessian information can be computed using the
particle system. Note, that these estimates are biased, but this does not affect
the invariance property as this is compensated for by the accept/reject mecha-
nism.



Algorithm 1 Sequential Monte Carlo for estimation of the gradient and Hessian
of the log-likelihood

Inputs: SSM (1), y1:T (observations), Rθ(·) (particle proposal), N (no. particles) and
∆ (lag).

Outputs: p̂θ(y1:T ), ŜT (θ) and ÎT (θ) (est. of likelihood, gradient and negative Hes-
sian).

1: Initialise the particles x
(i)
0 for i = 1, . . . , N .

2: for t = 1 to T do
3: Sample (7) for i = 1, . . . , N .
4: Compute (8) for i = 1, . . . , N .
5: end for
6: Compute (9), (13) and (16) to obtain p̂θ(y1:T ), ŜT (θ) and ÎT (θ).

Hence, we can use the MH algorithm together with Algorithm 1 to form the
final method in Algorithm 2. The acceptance probability follows from (4) as

α(θ′′, θ′) = 1 ∧ p̂θ
′′(y1:T )

p̂θ′(y1:T )

p(θ′′)

p(θ′)

q
(
θ′|θ′′, ŜT (θ′′), ÎT (θ′′)

)
q
(
θ′′|θ′, ŜT (θ′), ÎT (θ′)

) . (17)

This is the full PMH procedure that uses the second-order proposal. The com-
plexity of the algorithm is linear in the number of particles N and in the number
of iterations M . The user-choices include the particle proposal kernel Rθ(·), the
lag ∆, the number of particles N and the number of iterations M . Also, the
step-sizes γ needs to be tuned for each model, this is further discussed in the
subsequent section.

5 Numerical illustrations

We continue by illustrating the method proposed in Algorithm 2 for parameter
estimation in nonlinear SSMs. First, we consider a linear Gaussian state space
(LGSS) model and then a popular stochastic volatility model with a nonlinear
observation process.

We compare the three different variations of the proposal in (5), i.e. zeroth-
order, first-order and second-order. The step length γ is selected individually
for each method such that the acceptance rate is about 40%. Also, we use the
same step length for all the parameters to simplify calibration, i.e. γ is selected
as a scalar.

5.1 Linear Gaussian state space model

Consider the LGSS model,

xt+1|xt ∼ N
(
xt+1; θ1xt, θ

2
2

)
, (18a)

yt|xt ∼ N
(
yt;xt, 0.1

2
)
, (18b)



Algorithm 2 Second-order Particle Metropolis-Hastings for Bayesian parameter
inference in nonlinear SSMs
Inputs: Algorithm 1, M (no. PMH iterations), θ0 (initial parameter), γ (proposal
step length).
Output: θ = {θ1, . . . , θM} (samples from the parameter posterior).

1: Run Algorithm 1 to obtain p̂θ0(y1:T ), ŜT (θ0) and ÎT (θ0).
2: for k = 1 to M do
3: Sample θ′ ∼ q(θ′|θk−1, ŜT (θk−1), ÎT (θk−1)) using (5).

4: Run Algorithm 1 to obtain p̂θ′(y1:T ), ŜT (θ′) and ÎT (θ′).
5: Sample uk ∼ U [0, 1].
6: Compute (17) to obtain α(θ′, θk−1).
7: if uk < α(θ′, θk−1) then
8: {Accept the proposed parameter}
9: θk ← θ′ and p̂θk (y1:T )← p̂θ′(y1:T ).

10: ŜT (θk)← ŜT (θ′) and ÎT (θk)← ÎT (θ′).
11: else
12: {Reject the proposed parameter}
13: θk ← θk−1 and p̂θk (y1:T )← p̂θk−1(y1:T ).

14: ŜT (θk)← ŜT (θk−1) and ÎT (θk)← ÎT (θk−1).
15: end if
16: end for

with parameters θ? = {θ?1 , θ?2} = {0.5, 1.0}. We use T = 250 time steps, N =
5 000 particles, M = 10 000 (discarding the first 5 000 iterations as burn-in) and
the bootstrap APF with Rθ(·) = fθ(·) and systematic resampling. The fixed-
lag is chosen as ∆ = 12. Here, we use improper priors for the parameters, i.e.
p(θ1) = U [−1, 1] and p(θ2) = U [0,∞]. The step lengths are tuned as γ(0) = 0.04,
γ(1) = 0.065, γ(2) = 1.50, for the zeroth-order, first-order and second-order
proposals respectively.

In the left part of Figure 1, we present the trace plots of the burn-in phase of
the algorithms. We clearly see the advantage of using the second-order proposal,
as it adjusts its step size quickly to reach the neighbourhood of the true param-
eters. The contour plots of the estimated parameter posteriors are shown in the
right part of Figure 1, where we see that all proposals give similar parameter
posterior estimates.

5.2 Nonlinear stochastic volatility model

Consider the Hull-White stochastic volatility model [13],

xt+1|xt ∼ N
(
xt+1; θ1xt, θ

2
2

)
, (19a)

yt|xt ∼ N
(
yt; 0, 0.652 exp(xt)

)
, (19b)

with parameters θ? = {θ?1 , θ?2} = {0.98, 0.16}. We use the same settings and
priors as for the LGSS example. The step lengths are tuned as γ(0) = 0.05,
γ(1) = 0.045, γ(2) = 1.70, respectively.
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Figure 1: The trace plots (left) of the first 15 iterations and contour plots of the
parameter posterior estimates (right) from the three proposals used in Algorithm 2 on
the LGSS model in (18). The dotted lines corresponds to the true parameters from
which the data were generated.
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Figure 2: The trace plots (left) of the first 90 iterations and contour plots of the
parameter posterior estimates (right) from the three proposals used in Algorithm 2
on the stochastic volatility model in (19). The dotted lines corresponds to the true
parameters from which the data were generated.



In Figure 2, we present the burn-in trace plots and the parameter posterior
distributions for the three proposals. The behaviours of the proposals are similar
to the LGSS example and using the second-order proposal again shortens the
burn-in, but keeps a similar parameter posterior estimate.

6 Conclusions

We have proposed a novel algorithm based on PMH and particle smoothing
for Bayesian parameter inference in nonlinear SSMs. The algorithm uses first-
order and second-order information in the proposal to improve the performance
of the vanilla PMH algorithm. The complexity of the proposed algorithm is
linear in the number of particles, which makes it a practical alternative to other
smoothing-based inference algorithms.

We have seen examples illustrating that using the second-order proposals
shortens the burn-in phase. Also, the second-order proposal is simpler to tune
as it is scale-invariant and automatically rescales the step length in each direc-
tion. In the MH algorithm, it is known that adding first-order information into
the proposal improves the performance in high dimensional problems. Hope-
fully, similar results can be found for the second-order proposal in the PMH
framework.

Future work includes theoretical analysis of the convergence rate and scaling
properties of the algorithm. Also, it would be interesting to explore the use
of Hamiltonian MCMC [17, 11] ideas in this setting. This would potentially
improve the mixing of the Markov chain and could open up for the possibility
of solving problems with hundreds of parameters .

At http://users.isy.liu.se/en/rt/johda87/, we provide code and that
can be used to reproduce some of the numerical illustrations in this paper.

http://users.isy.liu.se/en/rt/johda87/
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