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Abstract—Social network analysis can be an important help for
military and criminal intelligence analysis. In real world appli-
cations, there is seldom complete knowledge about the network
of interest – we only have partial and incomplete information
about the nodes and networks present. Community detection
in networks is an important area of current research in social
network analysis with many applications. Finding community
structures is however a challenging task and despite significant
effort no satisfactory method has been found. Here we study the
problem of community detection in noisy and uncertain networks
with missing and false edges and propose methods for detecting
community structures in them. The method is based on sampling
from an ensemble of certain networks that are consistent with
the available information about the uncertain networks.

I. INTRODUCTION

Social network analysis[1], [2] is a vast and growing
research area. Its application areas range from analysis of
ecological networks[] to studies of link structures on the web[].
Social network analysis can also be an important help in
security and intelligence informatics[3], [4].

The first applications of social network analysis were by
sociologists who collected data by questionnaires or direct
observations and used graph visualization to gain insight into
the communication behavior of small groups. The field has
expanded considerably since then, and has also been influence
by the advance in computer technology which has enabled
collection of network data in enormous quantities. With the
increased availability of data, however, comes new challenges:
algorithms are needed to handle much larger networks than
previously, and some way has to be devised to take account
of the inherent uncertainty of the data. In recent years, there
has been much development in the social network analysis
field of new, more efficient algorithms for handling ever larger
amounts of data. So far, however, there has been very little
done taking account of the uncertainty of the data.

Uncertainty can arise in many different ways, depending on
the way that the network data has been collected. Different
observation models are needed for different kinds of data
collection.

We note that it is important do distinguish between uncertain
networks and weighted networks. One way of representing
uncertain networks is by simply adding a probability to each
edge, which resembles a weighted network. While for some
simple network measures, algorithms developed for weighted

networks can be applied to uncertain networks, this is not true
for for instance the community detection problem.

In this paper, we describe a framework method for how
to analyze uncertain networks and describe in detail how the
method can be applied to the community detection problem.

This paper is outlined as follows. In sectionII we briefly dis-
cuss some of the challenges faced when using social network
analysis in intelligence analysis. Section III gives an overview
of community detection, while section IV discusses modeling
of uncertain networks and briefly introduces the Dempster-
Shafer theoretical framework for merging information about
network substructures from different sources. Finally, section
V presents the method for detecting community structures in
uncertain networks, and also presents some results of applying
the method to test networks.

II. NETWORK ANALYSIS FOR INTELLIGENCE
APPLICATIONS

The goal of intelligence analysis [5]. is to provide a
decision-maker with basic data so that they can make a more
informed decision. Most often, the basic data is in the form
of an analysis report which summarizes information from
many different sources and gives recommendations for future
actions. For military intelligence analysis, the report often
provides also a description of the most likely future course of
events as well as the worst-case course of events. The specific
contents of an intelligence report, of course, varies depending
on the domain. Social network analysis has emerged as an
important tool for producing intelligence reports. In addition
to the possibility to visualize relations between people, orga-
nizations, events and objects, it is sometimes very useful to be
able to do quantitative analysis of a network and determine, for
example, the most important actor of it, or the most important
substructures/communities.

In intelligence applications, there is always uncertainty
present. The first cause of uncertainty is the objective of
the analysis itself – while intelligence analysis is goal-driven
and directed towards answering a specific information request,
this information request can sometimes be very vague and
unspecific. Consider for example the different between the
requests ”What is the likelihood that the enemy tank battalion
will continue to advance tomorrow?” with the more difficult
”What is the current terrorist threat against Sweden?”. For



the first type of question, it is important to have access to
good sources of geographical and terrain information as well
as information about the supply status and standard doctrinal
behavior of the battalion. Information from sensors and other
reconnaissance resources can also be used to improve the
quality of the answer. For the second type of questions, much
more data is needed. The answer will also be inherently more
uncertain.

Another source of uncertainty is in the data used to produce
the intelligence report. Sensor data can be associated with
uncertainties due to, e.g., misclassification probabilities. Data
from human resources (HUMINT) is uncertain because we
can never know for sure that the human source it not trying
to deceive us, and information collected from the web and
other open sources (OSINT) can be uncertain both because
of deception and because of errors in the collection and
processing of the data.

Social network data is particularly uncertain. In order to
construct a network to analyze, an intelligence analyst must
first determine what type of relations that are of interest,
and then map all available data to these types. Data can
come from both manual sources (”I saw X talk to Y”) and
automatic processing of, e.g., signals intelligence. Both carry
large amounts of uncertainty.

III. COMMUNITY DETECTION

Networks in general and social networks in particular often
contain some form of group structure known as communi-
ties (other common terms used are partitions, modules, and
clusters). In the context of data clustering, each node inside
the community is in some sense similar to its neighbors. For
example, we can often find friends, family, and colleagues
in the social network of a typical person. These groups are
mostly quite isolated and not many friendships exist between
these different groups. In this case, these three groups are the
communities of the network. They are also similar in regard
with their position and social roles in the network. Therefore, it
is in general possible to use the obtained community structure
for identifying social roles, hierarchies and hidden groups
within the network data material.

Communities are a vague and fragile concept found in some
networks. It is difficult to find communities and verify their
existence and uniqueness but some methods do exist. The most
promising is to evaluate the robustness of the clustering. The
definition of a community commonly used in social network
analysis is that a community is a subset of nodes which have
more internal connections than external. In this paper, we take
this definition for granted and study the problem of finding
such dense subsets when the input data is uncertain. It is
important to realize that in the end, the communities detected
in the networks are the result of the data which is the only
input given. Therefore as in all statistical methods, if the
data is flawed the corresponding community structure could
be misleading and uncertain. Robustness analysis and similar
methods can be used to analyze the significance and stability

Fig. 1. Two communities in a simple network, the number of edges in
each community is much higher than between the two communities.

of the structure found, thereby mimicking hypothesis testing
in statistics.

A. Community detection methods

Historically manual methods have been used to find com-
munity structures in collected data. Humans are often good at
finding structures in small and sparse networks but manual
methods are not practical for larger and denser network.
To solve this problem, many algorithmic methods used on
computers have been proposed from the fields of physics,
computer science, and statistics.

Despite this large effort, no completely satisfactory solution
to community detection problem has yet to been devised.
The main explanation for this is that community detection
(maximization of modularity) is a NP-complete optimization
problem. As a consequence from the necessary relaxations of
this problem it is often so that different algorithms have differ-
ent characteristics. Algorithms often have built-in tendencies to
find communities of different sizes but also often find different
community structures when applied to the same network.

In general, more complex community detection methods
are more accurate and robust in comparison with simple fast
methods but are limited to small sparse networks. As each
method has different properties it is commonplace to apply
several different methods to the same problem and compare
the results.

The first community detection methods proposed are based
on the related problem of graph partitioning. This problem is
common in computer sciences and mathematics with many
applications. An important everyday application is e.g. to
determine the correct division of computational effort on
parallel computers1. Most graph partitioning methods are only
able to divide a network into two parts and often find solutions
with a very small cut set2. [6]

1Often called the load balancing problem in practice, see e.g. some standard
work on parallel computation or [6] for more information.

2A cut set is the set of edges that need to be removed from a graph to
generate two disjoint components



There exist many methods for community detection, some
of the most promising are e.g. q-Potts spin glass methods
[7], label propagation [8], Infomaps [9], clique percolation
[10], and synchronization. Recent developments have also
been introduced to improve community detection methods
for weighted, directed, and dynamic networks. For more
information about this, thorough discussions and comparisons
of community detection methods, see Refs. [11], [12].

IV. UNCERTAIN NETWORKS

As outlined above, for many real-world applications of
social network analysis we do not have complete certain
knowledge about the network of interest. Instead, we must
make do with partial and incomplete information. In previous
work, the data is often considered certain and the uncertainty
removed by using one of two alternatives. The first alternative
is to include all edges and nodes found, thereby possibly
adding false nodes and edges into the network. The second
alternative is to remove all uncertain edges and nodes, thereby
risking problems with missing edges and networks. It is not
difficult to realize that both methods generate different network
structures and hence also different detected communities.
Another approach to uncertain network analysis is to simply
use the probabilities of edges in the network as weights and to
use standard methods for analyzing weighted networks. This
works very well for simple measures, but gives erroneous
results when applied to the community detection problem,
since the correlation in communities induced by the presence
of higher-order structures in the network is ignored.

In this paper we work under the assumption that a large
portion of the data is uncertain and try to utilize the data
in the best possible manner. This section explains the ob-
servation model of networks and discusses some possible
future generalizations of the model to include more interesting
difficulties encountered in practical applications. We also in-
troduce a framework to quantify and combine several different
sources of information to estimate imperfect networks called
Dempster-Shafer theory[13].

The basic idea for handling the uncertainty is quite simple
[14]: we use the available information to construct an ensemble
of certain networks that are consistent with the available
information about the network. We then take a sufficiently
large number of samples from this ensemble and compute
communities in each of these certain networks. This set of
community structures is then merged to produce an overall
estimation of the community structure of the uncertain net-
work.

A. Observation model

The observation model is a formalization of the problem
with observation of an underlying network by the use of
other related networks. Often it is not possible to observe the
network of interest directly and therefore some other proxy
network has to be used as an approximation. A classical
example of this is using the communication network between
people as a proxy of different kinds of relations. People with

stronger connections and deeper relationships are assumed to
communicate more often or in some characteristic pattern.

Formalizing this, we assume that the real network, f , is
not directly observable, but similar to a proxy network, g, to
estimate the underlying network. By using this other network
to describe the network of interest several different problems
are encountered, e.g. finding edges in the observed network
which do not exist in the real network etc. Assume that an edge
existence probability, P(gij), i.e. the probability that an edge
exist (or does not exist) in the observed network, g, between
nodes i and j can be found as,

P(gij) = FP + TP = P(gij |¬fij) + P(gij |fij), (1)
P(¬gij) = TN + FN = P(¬gij |¬fij) + P(¬gij |fij),(2)

where FP(N) denote False Positive (Negative), TP(N) denote
True Positive (Negative), and P(·) is the observation probabil-
ity. The probability, P(gij), should in some aspect indicate the
uncertainty of the information regarding the edge, gij . High
probabilities indicate strong evidence for the hypothesis that
the edge exist in the real network. Smaller probabilities indi-
cate vague or contradicting evidence. This is an observation
model which links the observed with the real network and
formalizes the uncertainty in using this approximation. An
illustration of this is shown in Figure 2.

Fig. 2. A small uncertain network with edge existence probabilities.

Definition 1 (Uncertain networks): An uncertain network
is a graph, G(V,E), where V is a set of nodes and E = [Eij ]
is some edge existence probability matrix with Eij = P(gij)
as the probability that an edge exists between nodes i and j.

B. Generalizing the observation model

Edges are not the only uncertain and imperfect objects found
in imperfect networks, more complex structures and objects
may also be uncertain, missing, or falsely included. Nodes
can also be modeled in the same manner to edges; i.e. the
network may contain uncertain, missing and false nodes. In
this case, false nodes could mean that to that two nodes in the
observed network are really only one in the real network. The
probabilities can also describe different network structures,



e.g. triangles, n-cliques, paths, and trees. Adding evidence
regarding these structures can improve the estimated network
structure found using observed network data.

Using the framework built in the remaining part of this
section, it is possible to combine different sources of informa-
tion to estimate an imperfect network. The resulting structure
from a combination of evidences is an imperfect network with
existence probabilities for edges, nodes, and structures as well
as missing and false edges.

C. Dempster-Shafer theory

The theory of evidence, or Dempster-Shafer Theory (DST)
[13], is a generalization of probability theory which relaxes
the axiom of additivity and introduces a different method
for merging evidence from multiple sources. The theory also
allows for the construction of intervals with upper and lower
probabilities to include the uncertainty in merged conflicting
evidence. DST is popular in some areas of artificial intelli-
gence, decision support, and data fusion. Instead of probability
functions, the theory of evidence use belief and plausibility
functions, defined in Definition 2.

Definition 2 (Belief and plausibility functions): Assume
that the frame of discernment, Θ, is a finite set and let 2Θ

denote the set of all subsets of Θ. Suppose that the belief
function Bel : 2Θ → [0, 1] satisfy the following3,

Bel(Ø) = 0, (4)
Bel(Θ) = 1, (5)

Bel (A1 ∪ . . . ∪An) ≥
∑

i

Bel (Ai)−
∑
i<j

Bel (Ai ∩Aj)

+ . . . + (−1)n−1Bel (A1 ∩ . . . ∩An))(6)

where n is some positive integer and every collection,
A1, . . . , An, is a subset of 2Θ. The plausibility function
Pl : 2Θ → [0, 1] is the dual of the belief function,

Pl(A) = 1− Bel(Ac), (7)

where Ac denotes the complement of the subset A ⊂ 2Θ.
The Belief function, Bel(A), is interpreted as the belief that
the truth lies in some subset of the set A of all possibilities.
The Plausibility function, Pl(·), measure the failure to doubt
the truth and note4 that Bel(A) ≤ Pl(A) for each A ⊆ 2Θ.
Therefore the probability that the truth lie in A is given by
the interval [Bel(A), Pl(A)]. [13]

Combining probabilities from different sources is the
essence of information fusion. Dempster-Shafer theory allow

3The third condition (6) is related to the inclusion-exclusion principle in
probability theory,∣∣∣∣∣

n⋃
i=1

ai

∣∣∣∣∣ =

n∑
i=1

|Ai| −
∑
i<j

|Ai ∩Aj |+ (−1)n−1 |A1 ∩ · · ·An| , (3)

which is similar to the condition if Bel(Ai) = |Ai| but has an equality where
(6) has an inequality.

4This is due to that the belief is sub-additive, Bel(A) + Bel(Ac) ≤ 1 and
plausibility is super-additive, Pl(A) + Pl(Ac) ≥ 1. Probability is additive
and does in some situations coincide with the belief and plausibility, when
Bel(A) + Bel(Ac) = Pl(A) + Pl(Ac) = 1.

for combining evidence in a more general manner than in
probability theory, presented in Theorem 1. Although no prior
probabilities and likelihood functions are needed, we need to
have a mass function, m(·), that assign probability mass to the
frame of discernment, Θ. [15]

Theorem 1 (Dempster’s rule of combination): Let mi :
2Θ → [0, 1], for i = 1, 2, be two (different) basic proba-
bility assignment functions on some frame of discernment, Θ,
satisfying.

m(Ø) = 0, and,
∑

A∈2Θ

m(A) = 1. (8)

The combined belief of a subset A ⊆ 2Θ is,

m1,2(A) = (m1⊕m2)(A) = [1−K]−1
∑

B∩C=A6=Ø

m1(B)m2(C),

(9)
where m1,2(Ø) = 0 and K is the amount of conflict between
the two beliefs defined by,

K =
∑

B∩C=Ø

m1(B)m2(C). (10)

By using the basic probability assignment function, m(·), the
belief and plausibility is found by the following expression,

Bel(A) =
∑
B⊂A

m(B), Pl(A) =
∑

B∩A6=Ø

m(B), (11)

thus allowing for combination of evidence to construct proba-
bility intervals. By repeatedly adding evidence using this rule
of combination, e.g. four evidences are combined using,

m1,2,3,4(A) = (((m1 ⊕m2)⊕m3)⊕m4)(A), (12)

any number of evidence can be combined. DST can thus be
used to quantify the uncertainty in a network by combining
evidence from several different sources.

V. DETERMINING COMMUNITY STRUCTURES IN
UNCERTAIN NETWORKS

In this section, we describe the complete method for detect-
ing community structure in uncertain networks. For an outline
of the method, see Figure 3. The figure shows the process
from the uncertain network data at the top to the estimated
community structure at the bottom. In practical applications
of this method, we would use the results presented in previous
chapters to combine evidence from proxy networks and other
forms of collected information to find an estimated network
structure with existence probabilities. The result is called an
imperfect network and was discussed in the previous section.

The next steps are outlined in detail in this section:
1) sampling candidate networks from the ensemble of

consistent networks using (Markov Chain) Monte Carlo-
methods

2) detecting candidate communities using standard methods
3) merging candidate communities into the most probable

community structure of the uncertain/imperfect network.



Fig. 3. The proposed method to detect communities in imperfect networks.

A. Sampling candidate networks

The introduced methods for quantifying and combining
uncertainty in network information generate a probability or
a probability interval. This measure corresponds to the degree
of uncertainty that an edge, node, or structure exist in the
network.

An uncertain network, G(V,E), is constructed from these
existence probabilities, E = [Eij ], where e.g. Eij is the
probability that an edge exist between nodes i and j. We limit
ourselves to probabilities describing uncertain edges in this
paper, however there are generalizations for other uncertain
objects. Generalization of the method for handling probability

intervals (from, e.g., Dempster-Shafer theory) is trivial.
The first step in detecting communities in uncertain net-

works is to generate an ensemble of networks that are con-
sistent with this network information. Realizations are found
using Monte Carlo-sampling with the existence probabilities,
Eij . The sampling is performed using uniformly distributed
random numbers to generate a matrix, R = [Rij ], where
Rij ∼ U [0, 1].

An edge is included in the graph if the random element in
the corresponding matrix is less than or equal to the product of
the corresponding elements of the edge probability matrix and
the adjacency matrix, i.e. Rij ≤ EijAij . By simulating many



Fig. 4. A small uncertain network and its corresponding ensemble
of networks. The proportion of networks of a certain form in the
ensemble is determined by the edge existence probabilities.

random matrices, R, a large ensemble of certain networks
are generated, each consistent with the information in the
uncertain network. The sampled networks are called candi-
date networks or realizations of the ensemble of consistent
networks.

A simple situation using this sampling method in shown in
Figure 4, where a small network is sampled. The ensemble
of consistent networks consist of the four different possible
permutations of the network structure. Each permutation exists
with the proportion p and therefore also has the probability p
of being sampled.

By sampling many networks from the ensemble, the idea is
to mimic the distribution of permutations in the ensemble by
the set of sampled networks. Which means that if 50 networks
are sampled from the ensemble, then approximately 12 should
be of the first type of permutation in which no edge is removed
and so on.

To simplify simulations, all nodes of degree one are re-
moved during the community detection and merging steps.
After those steps, the nodes with degree one are re-added
to the network again after these two steps have completed.
The removed nodes (all of degree one) are assigned to the
same community as their neighbor. As a further simplification,
the community detection is only performed on the largest
component of the graph, due to the fact that some algorithms
only work on networks with one component.

B. Detecting candidate communities

For each realization of the imperfect network some com-
munity detection algorithms is applied. All these methods are
used in combination with modularity calculations and assum-
ing that maximizing modularity is equivalent to maximizing
the quality of the community clustering.

The community structures of each realization (or candi-
date network) are referred to as candidate communities. The
community structures for the ns candidate networks of the
uncertain network are summarized as a membership matrix,

Fig. 5. Node-based Fusion using agglomerative hierarchical cluster-
ing with a special linkage calculation.

M = [Mik], where Mik is the community in which node i is
a member in candidate network k = {1, 2, . . . , ns} and ns is
the number of samplings.

C. Merging candidate communities

The remaining problem is to merge the different community
structures found in each candidate network into one commu-
nity structure. This is accomplished by merging nodes often
found in the same cluster or by merging similar candidate com-
munities. Two different methods are proposed to accomplish
this: (i) node-based fusion of communities and (ii) community-
based fusion of communities.

1) Node-based Fusion of Communities: The first method,
Node-based Fusion of Communities (NFC) is an extension of
Instance-based Ensemble Clustering presented in Refs. [16],
[17]. The NFC-method is outlined in Figure 5 which begins
with the construction of a complete graph G = (V,F) from the
candidate communities. In the new graph, nodes correspond to
nodes in the old graph and the weighted edges correspond to
the frequency of instances when two nodes have been grouped
together in the same candidate community.

The nodes are clustered using agglomerative hierarchical
clustering with the edge weight as the similarity between two
nodes. Thus nodes often found in the same candidate cluster
are grouped together by the hierarchical clustering method.

The main difference of this method compared to IBEC is the
process in which the frequency, Fij , is recalculated after each
merge. The frequency between the merged nodes (cluster) l
and the other nodes or clusters, v1, v2, . . . , vnl

, is found by

Fk,l =

∣∣∣∣∣⋂
k

Mkl

∣∣∣∣∣ , (13)

where the membership matrix, M = [Mik], where Mik is the
community in which node i is a member in candidate network
k = {j, i1, . . . , inl

}. That is, Fk,l is the number of occurrences
where all nodes (in both clusters) are in the same candidate
cluster.

This incurs some loss of information about individual nodes
as they are clustered together and information about the simi-
larity of individual nodes are lost. The result of the hierarchal
clustering algorithm is a dendrogram and a list of merges. The
clustering corresponding to the maximum modularity is taken
as the communities found in the merged candidate networks.



Fig. 6. Community-based Fusion using k-means clustering on the
truncated singular value decomposition of the adjacency matrix.

2) Community-based Fusion of Communities: The second
method is based on Community-based Ensemble Clustering
and by singular decomposition of the similarity matrix, S =
[Sij ] = [sim(i, j)]. This method is quite dissimilar to NFC
because it is based on merging similar clusters and not similar
nodes.

The full method for merging candidate communities using
Community-based Fusion of Communities (CFC) is outlined in
Figure 6. The first step is to construct a complete graph G =
(V,S), with a set of nodes, V (G), consisting of each candidate
cluster, Ci. The similarity matrix, S = [Sij ], is calculated using
the the cosine measure,

Sij =
|Ci ∩ Cj |√
|Ci| |Cj |

, (14)

where Ci and Cj are candidate clusters for some k such that
i, j = 1, . . . , k and i 6= j. This measure is chosen due to its
property of linearity and that it is scaled to unity. The similarity
matrix is expanded using singular value decomposition. By
using the k first eigenvectors, a low-dimensional representation
of the clustering is found.

This approximation is clustered using k-means to find the
meta-clustering of candidate clusters. Each node, from the
original network, is assigned to the community it is most often
a member of. This is repeated for all possible values of k ≤ n,
to find the final community structure of the network, i.e. the
one that maximize the modularity.

D. Results

Figure 7 shows the results of the community detection
method on three different real networks where there is a known
community structure that we can compare with. The networks
used are the well-known karate[18], football[19] and dolphin
[20]networks. The figure shows the mutual information be-
tween the correct community structure and that determined by
running the methods as a function of the added uncertainty.
The x axis denotes the fraction of edges that have uncertainty
associated with them.

The merging method NFC perform as good as or better
than CFC when using most community detection algorithms.
When using NFC to merge candidate communities, LP is the
best choice when observing both NMI and correlation. Using
CFC, we get the best results using the SP algorithm (for karate

and football networks) and the GA algorithm (for the dolphin
network).

VI. DISCUSSION AND CONCLUSION

In this paper, we presented a method for computing com-
munity structures of networks where we do not have complete
knowledge of nodes and edges. The method is based on gener-
ating an ensemble of certain networks that are consistent with
the information available about the real network. Community
structures are then computed for each such certain network,
and the results merged. The method can be used not only when
we have knowledge about edge probabilities, but also if there
is information about more complicated network substructures
and their probabilities. The method for merging the results of
the community detection methods can also be used to merge
the results of several different community detection algorithms
applied to the same certain network.

Results that indicate that it is possible to retrieve community
structures in sample networks with added uncertainty were
briefly discussed.

We see several possibilities for future work in this area. We
are conducting more thorough studies of the robustness of the
community detection method when applied to different sample
networks with different degrees of uncertainty. The general
method for analyzing uncertain networks here can be trivially
applied to other network measures. Community structure as
a concept is not well-defined, and it would be interesting to
investigate this further in the context of partially and incom-
pletely observed networks. The test method whereby a certain
network is observed with a fixed degree of uncertainty added
could be used for investigating the concept of community in
more detail. Another interesting research challenge in this area
is how to quantify the uncertainty in the input network data.
More research is needed on adequate observation models for
uncertain network data.
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the fraction of edges in the network that are certain. . The curves are estimated by using non-parametric regression with the Gaussian kernel
on the result of 30 runs each using 50 candidate networks.
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