Quasi-Newton particle Metropolis-Hastings

Johan Dahlin, Fredrik Lindsten and Thomas B. Schön

Main ideas and contribution

- \diamond Quasi-Newton update to estimate the Hessian of $\log \pi(\theta)$.
- \diamond Incorporate this information into proposal $q(\theta'|\theta, u)$.
- \diamond Reduces the need of tedious pilot runs to find ϵ and \mathcal{P} .
- ◊ Decreases the inefficiency (correlation) in the Markov chain exploring $\pi(\theta)$, which accelerates the algorithm.

Bayesian parameter inference

Parameter inference in state space models (SSMs),

$$x_t | x_{t-1} \sim f_\theta(x_t | x_{t-1}), \qquad y_t$$

is based on the **parameter posterior** given by

$$\pi(\theta) = p(\theta|y_{1:T}) = \frac{p(y_1)}{p}$$

where $p(\theta)$ and $p(y_{1:T}|\theta)$ denote the prior distribution and the likelihood function, respectively.

Particle Metropolis-Hastings

We can sample from $\pi(\theta)$ by simulating

$$\theta' \sim q\Big(\theta' | \theta, u\Big) = \mathcal{N}\Big(\theta'; \mu(\theta, u), \Sigma(\theta, u)\Big),$$
 (1)

using auxiliary variables u and accept θ' with probability

$$\alpha(\theta', u', \theta, u) = \min\left\{1, \frac{\widehat{\pi}(\theta')}{\widehat{\pi}(\theta)}\right\}$$

where $\widehat{\pi}(\theta|u)$ denotes a particle estimate of $\pi(\theta)$.

LINKÖPING UNIVERSITY

Proposal	$\mu(heta,u)$	$\Sigma(heta, u)$
РМНо	heta	$\epsilon_0^2 \mathcal{P}^{-1}$
PMH1	$ heta+rac{1}{2}\epsilon_1^2 \mathcal{P}^{-1}\widehat{\mathcal{G}}(heta u)$	$\epsilon_1^2 \mathcal{P}^{-1}$
PMH2	$ heta + rac{1}{2} \epsilon_2^{\overline{2}} \widehat{\mathcal{H}}^{-1}(\theta u) \widehat{\mathcal{G}}(\theta u)$	$\epsilon_2^2 \widehat{\mathcal{H}}^{-1}(heta u)$

Table: Proposals with the gradient $\mathcal{G}(\theta) = \nabla \log \pi(\theta)$, negative Hessian $\mathcal{H}(\theta) = -\nabla^2 \log \pi(\theta)$ and pre-conditioning matrix \mathcal{P} .

 $_t|x_t \sim g_\theta(y_t|x_t),$

 $_{1:T}| heta)p(heta)$

 $p(y_{1:T})$

 $|u') \ q(\theta|\theta',u')$ $|u\rangle q(\theta'| heta,u)$

Figure: Incorporating $\mathcal{H}(\theta)$ into $q(\theta'|\theta, u)$ is important when the posterior is non-isotropic. Compare the exploration when $\mathcal{P} = \epsilon_0^2 \mathbf{I}_p$ (left) and $\mathcal{P} = \mathcal{H}(\theta)$ (right).

Particle smoothing for estimating $\mathcal{G}(\theta)$ We can estimate $\mathcal{G}(\theta)$ using the **Fisher identity**

 $\widehat{\mathcal{G}}(\theta|u) = \int \nabla \log p_{\theta}(x_{1:T}, y_{1:T}) \, \widehat{p}_{\theta}^{N}(x_{1:T}|y_{1:T}, u) \, \mathbf{d}x_{1:T},$ $\nabla \log p_{\theta}(x_{1:T}, y_{1:T}) = \sum_{t \in T} \left[\nabla \log f_{\theta}(x_t | x_{t-1}) + \nabla \log g_{\theta}(y_t | x_t) \right],$

which can be approximated using the particle system

$$u = \left[\left\{ x_t^{(i)}, \right. \right] \right]$$

which can be obtained from any particle smoother.

Quasi-Newton update for estimating $\mathcal{H}(\theta)$

We can then estimate $\mathcal{H}(\theta)$ using $\widehat{\mathcal{G}}(\theta|u)$ by iterating $-\rho_l g_l s_l^{\mathsf{T}}) + \rho_l s_l s_l^{\mathsf{T}}, \qquad (2)$ $\widehat{\mathcal{G}}(\theta_{I(l)}|u_{I(l)}) - \widehat{\mathcal{G}}(\theta_{I(l-1)}|u_{I(l-1)}),$

$$B_{l+1}^{-1}(\theta') = \left(\mathbf{I}_p - \rho_l s_l g_l^{\mathsf{T}}\right) B_l^{-1} \left(\mathbf{I}_p \\ s_l = \theta_{I(l)} - \theta_{I(l-1)}, \quad g_l =$$

over $l \in \{1, 2, ..., M - 1\}$ with I(l) = k - l and $\rho_l^{-1} = g_l^{\top} s_l$.

The qPMH2 proposal is obtained from (1) by

$$u(\theta, u) = \theta_{k-M}, \qquad \Sigma(\theta, u) = \widehat{\mathcal{H}}^{-1}(\theta|u) = -B_M^{-1}(\theta).$$

proposal $q(\theta'|\theta, u)$ by using (2).

This follows from a lag-M dependency introduced into the

Numerical illustration

 $x_t | x_{t-1} \sim \mathcal{N}\left(x_t; \mu + \phi(x_{t-1} - \mu), \sigma_v^2\right), \quad y_t | x_t \sim \mathcal{N}\left(y_t; x_t, 0.1^2\right).$

We simulate T = 250 obs. with $\theta = \{0.20, 0.80, 1.0\}$ and compare the inefficiency factors (IFs) when estimating $\pi(\theta)$.

Paper and source code

Available at http://work.johandahlin.com/

Consider the linear Gaussian SSM with $\theta = \{\mu, \phi, \sigma_e\},\$

Acc. rate	minIF	max IF
0.28 0.78	12.13 11.28	13.71 14.50
0.55	3.00	3.01

LINKÖPING UNIVERSITY **Department of Electrical Engineering**