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Summary

e We propose a PMCMC algorithm that incorporates first- and
second-order information into the proposal distribution.

e Fnables estimation of parameters in general state space models.

e A large improvement in the initial phase of the algorithm is

obtained on a linear Gaussian state space model.

Bayesian parameter inference

We are interested in solving the parameter inference problem in

nonlinear state space models

Li4+1|Tt ™~ f9($t+1|xt)a

Yelxr ~ ho(ye| ),

given a set of observations D = {y,}L, and where §# € © C R? denotes

static parameters. The log-posterior distribution is given by
log p(0|D) o< log p(D|0) + log p(f) + const.,

where log p(8) and log p(D|f) denote the parameter log-prior and the
(often) intractable log-likelihood function, respectively.

Zeroth-order PMCMC

This problem can be solved with a Particle Metropolis-Hastings
(PMH) algorithm, with the acceptance probability

" p(D|0) p(0) Q(9|‘9/)} |

a(6',0) = min < 1

L 5D p0) a00) (b

where p(D|0) denotes the particle estimate of p(D|6). Here, new samples

are proposed using e.g. a Gaussian random walk proposal
0"~ q(0'10) = N(0;0,%).

This is known to scale inefficiently in higher dimensions.
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Main idea
Use particle smoothers to estimate the gradient and Hessian of
log p(A|D) and to use this information in the PMH proposal.

First- and second-order PMCMC

A second-order Taylor expansion of log p(6'|D) around € has the form

log p(0'| D) ~ log p(0|D) + (¢ — ) 'V log p(6|D)
50— 0)" [Vlogp(61D)] (¢ — 6)

which can be rewritten as

1
p(0'|D) Lexp —§FTZ(9)F o withI'=60" — 0 —Z(0)'S(6),

where we introduce S(6) = V log p(0|D) and Z(0) = —V*1og p(0|D).

Guided by the Taylor expansion, we design a proposal using second-

order information of the form
2
o~ a010) =N (#2050 S0.270)), @

where we have introduced the step-size €. By choosing Z~1(0) = I, we

obtain a proposal using only first-order information.

Estimation of gradients and Hessians

The estimate of S(#) is obtained using Fisher’s identity

§(9) = /Ve log po(z1.7, Y1.7) Do(X1.7|Y1.7) Ay,

where py(x1.7|y1.r) denotes the empirical distribution obtained from a

particle smoother. The estimate of Z(#) is obtained similarly using

~ A 2
I(Q) — {5(9)} — /[Va 10%179(3?1;%917)]2 ﬁe(l‘lzT\yLT) dzi.7
—/[nggm(m, yl:T)} ﬁe(flzT\ykT) dxy.r,

which follows from Louis’ identity.
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Figure: An iteration of the second-order PMH algorithm.

Example: Linear Gaussian model

Tipi|ze ~ N (th+1§ 014, ‘93) ;
ye|ey ~ N (yt; Lt, 0-12) )

with true parameters 6* = {67,605} = {0.5,1.0}. We use T' = 100 time
steps, /N = 1000 particles and M = 30000 MCMC iterations.
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More information and source code
http://users.isy.liu.se/rt/johda87/

http://www.control.isy.liu.se/



