

Second-order PMCMC for Parameter Inference

Johan Dahlin[†], Fredrik Lindsten[†] and Thomas B. Schön[‡]

Summary

- We propose a PMCMC algorithm that incorporates first- and second-order information into the proposal distribution.
- Enables estimation of parameters in general state space models.
- A large improvement in the initial phase of the algorithm is obtained on a linear Gaussian state space model.

Bayesian parameter inference

We are interested in solving the **parameter inference** problem in **nonlinear state space models**

$$x_{t+1}|x_t \sim f_{\theta}(x_{t+1}|x_t),$$
$$y_t|x_t \sim h_{\theta}(y_t|x_t),$$

given a set of observations $\mathcal{D} = \{y_t\}_{t=1}^T$ and where $\theta \in \Theta \subseteq \mathbb{R}^d$ denotes static parameters. The log-posterior distribution is given by

$$\log p(\theta|\mathcal{D}) \propto \log p(\mathcal{D}|\theta) + \log p(\theta) + \text{const.},$$

where $\log p(\theta)$ and $\log p(\mathcal{D}|\theta)$ denote the parameter log-prior and the (often) intractable log-likelihood function, respectively.

Zeroth-order PMCMC

This problem can be solved with a **Particle Metropolis-Hastings** (PMH) algorithm, with the acceptance probability

$$\alpha(\theta', \theta) = \min \left\{ 1, \frac{\widehat{p}(\mathcal{D}|\theta')}{\widehat{p}(\mathcal{D}|\theta)} \frac{p(\theta')}{p(\theta)} \frac{q(\theta|\theta')}{q(\theta'|\theta)} \right\}, \tag{1}$$

where $\widehat{p}(\mathcal{D}|\theta)$ denotes the particle estimate of $p(\mathcal{D}|\theta)$. Here, new samples are proposed using e.g. a **Gaussian random walk** proposal

$$\theta' \sim q(\theta'|\theta) = \mathcal{N}(\theta';\theta,\Sigma_{\theta}).$$

This is known to scale inefficiently in higher dimensions.

Main idea

Use particle smoothers to estimate the gradient and Hessian of $\log p(\theta|\mathcal{D})$ and to use this information in the PMH proposal.

First- and second-order PMCMC

A second-order Taylor expansion of $\log p(\theta'|\mathcal{D})$ around θ has the form

$$\log p(\theta'|\mathcal{D}) \approx \log p(\theta|\mathcal{D}) + (\theta' - \theta)^{\top} \nabla \log p(\theta|\mathcal{D}) + \frac{1}{2} (\theta' - \theta)^{\top} \left[\nabla^2 \log p(\theta|\mathcal{D}) \right] (\theta' - \theta),$$

which can be rewritten as

$$p(\theta'|\mathcal{D}) \otimes \exp\left[-\frac{1}{2}\Gamma^{\top}\mathcal{I}(\theta)\Gamma\right], \text{ with } \Gamma = \theta' - \theta - \mathcal{I}(\theta)^{-1}\mathcal{S}(\theta),$$

where we introduce $S(\theta) = \nabla \log p(\theta|\mathcal{D})$ and $I(\theta) = -\nabla^2 \log p(\theta|\mathcal{D})$.

Guided by the Taylor expansion, we design a proposal using **second-order information** of the form

$$\theta' \sim q(\theta'|\theta) = \mathcal{N}\left(\theta'; \theta + \frac{\epsilon^2}{2}\widehat{\mathcal{I}}^{-1}(\theta)\,\widehat{\mathcal{S}}(\theta), \epsilon^2\widehat{\mathcal{I}}^{-1}(\theta)\right),$$
 (2)

where we have introduced the step-size ϵ . By choosing $\widehat{\mathcal{I}}^{-1}(\theta) = \mathbf{I}_d$, we obtain a proposal using only **first-order information**.

Estimation of gradients and Hessians

The estimate of $S(\theta)$ is obtained using **Fisher's identity**

$$\widehat{\mathcal{S}}(\theta) = \int \nabla_{\theta} \log p_{\theta}(x_{1:T}, y_{1:T}) \, \widehat{p}_{\theta}(x_{1:T} | y_{1:T}) \, \mathrm{d}x_{1:T},$$

where $\widehat{p}_{\theta}(x_{1:T}|y_{1:T})$ denotes the empirical distribution obtained from a particle smoother. The estimate of $\mathcal{I}(\theta)$ is obtained similarly using

$$\widehat{\mathcal{I}}(\theta) = \left[\widehat{\mathcal{S}}(\theta)\right]^2 - \int \left[\nabla_{\theta} \log p_{\theta}(x_{1:T}, y_{1:T})\right]^2 \widehat{p}_{\theta}(x_{1:T}|y_{1:T}) dx_{1:T}$$
$$- \int \left[\nabla_{\theta}^2 \log p_{\theta}(x_{1:T}, y_{1:T})\right] \widehat{p}_{\theta}(x_{1:T}|y_{1:T}) dx_{1:T},$$

which follows from **Louis' identity**.

Figure: An iteration of the second-order PMH algorithm.

Example: Linear Gaussian model

$$x_{t+1}|x_t \sim \mathcal{N}\left(x_{t+1}; \theta_1 x_t, \theta_2^2\right),$$
 $y_t|x_t \sim \mathcal{N}\left(y_t; x_t, 0.1^2\right),$

with true parameters $\theta^* = \{\theta_1^*, \theta_2^*\} = \{0.5, 1.0\}$. We use T = 100 time steps, $N = 1\,000$ particles and $M = 30\,000$ MCMC iterations.

More information and source code http://users.isy.liu.se/rt/johda87/

