Parameter estimation in non-linear SSMs using Newton optimisation Johan Dahlin, Manon Kok, Thomas B. Schön and Adrian Wills

Main ideas and contribution

- The likelihood and its gradient and Hessian are intractable for a general SSM.
- Investigate two approximations to estimate the these quantities based on linearisation and sampling.
- > Promising results for two synthetic test problems.

Maximum likelihood inference

The parameter estimate for a state space model (SSM),

$$x_{t+1} | x_t \sim f_{\theta}(x_{t+1} | x_t), \quad y_t | x_t$$

can be computed by

$$\hat{\theta} = \operatorname*{argmax}_{\theta \in \Theta} \ell(\theta)$$

where $\ell(\theta) = \log p(y_{1:T}|\theta)$ denotes the log-likelihood. This can be implemented by the Newton update given by

$$\theta_k = \theta_{k-1} - \varepsilon_k \mathcal{H}^{-1} \left(\theta_{k-1} \right)$$

at iteration k and where $\mathscr{G}(\theta)$ and $\mathscr{H}(\theta)$ denote the gradient and Hessian of the log-likelihood, respectively.

Computing gradients and Hessians We can compute $\mathscr{G}(\theta)$ using the **Fisher identity**

$$\mathscr{G}(\theta_k) = \sum_{t=1}^T \int \xi_{\theta}(x_{t+1:t}) p_{\theta}(x_t)$$

 $\triangleq \mathscr{G}_t(\theta)$ $\xi_{\theta}(x_{t+1:t}) \triangleq \nabla \log f_{\theta}(x_{t+1} | x_t) + \nabla \log g_{\theta}(y_t | x_t).$

We can estimate $\mathcal{H}(\theta)$ by the **Segal-Weinstein estimator**

$$\widehat{\mathscr{H}}(\theta) = \frac{1}{T} \Big[\mathscr{G}(\theta) \Big] \Big[\mathscr{G}(\theta) \Big]^{\mathsf{T}} - \sum_{t=1}^{T} \sum_{t=1}^{T} \left[\mathscr{G}(\theta) \Big]^{\mathsf{T}} \Big] = \frac{1}{T} \Big[\mathscr{G}(\theta) \Big]^{\mathsf{T}} - \sum_{t=1}^{T} \sum_{t=1}^{$$

using the gradient for each time step.

The intractability of the two-step smoothing distribution $p_{\theta}(x_{t+1:t}|y_{1:T})$ is handled by two different kinds of approximations.

 $y_t | x_t \sim g_\theta(y_t | x_t),$

9),

 $) \mathscr{G}\left(heta_{k-1}
ight),$ (1)

 $t_{t+1:t} | y_{1:T} \rangle dx_{t+1:t},$

 $\left[\mathscr{G}_{t}(\theta)\right]\left[\mathscr{G}_{t}(\theta)\right]^{\top},$

Algorithm 1: Newton method for ML parameter estimation

INPUTS: Initial parameter θ_0 , maximum no. iterations *K*. OUTPUTS: ML parameter estimate $\hat{\theta}$. 1: Set k = 0

- 2: while exit condition is not satisfied do
- a: Run an algorithm to estimate $\widehat{\ell}(\theta_k)$, $\widehat{\mathscr{G}}(\theta_k)$ and $\widehat{\mathscr{H}}(\theta_k)$.
- b: Determine ε_k using line search or a stochastic schedule.
- c: Apply the Newton update (1) to obtain θ_{k+1} . d: Set k = k + 1.
- end while
- 3: Set $\hat{\theta}_{\mathrm{ML}} = \theta_k$.

Linearisation approximation

We approximate $p_{\theta}(x_{t+1:t} | y_{1:T})$ by

$$p_{\theta}(x_{t+1:t} | y_{1:T}) = \mathcal{N}\left(x_{t+1:t} | y_{1:T}\right) = \mathcal{N}\left(x_{t+1:t} | y_{1:T}\right)$$

where the smoothed state estimate is given by

 $\hat{x}_{t+1:t|T} = \operatorname{argmax} \log p_{\theta}(x_{1:T}, y_{1:T}),$ $x_{t+1:t}$

putes $P_{t+1:t|T}$. The complete data log-likelihood,

$$\log p_{\theta}(x_{1:T}, y_{1:T}) = \log p_{\theta}(x_{T-1}) + \sum_{t=1}^{T-1} \log f_{t}$$

is approximated using an **extended Kalman filter**.

Sampling approximation

We approximate $p_{\theta}(x_{t+1:t} | y_{1:T})$ by the empirical distribution

$$p_{\theta}(x_{t+1:t} | y_{1:T}) = \sum_{i=1}^{N} \sum_{i=1}^{N} y_{i:T}(x_{t+1:T}) = \sum_{i=1}^{N} \sum_{i=1}^{N} y_{i:T}(x_{t+1:T}) = \sum_{i=1}^{N} \sum_{i=1}^{N} y_{i:T}(x_{t+1:T}) = \sum_{i=1}^{N} \sum_{i=1}^{N} y_{i:T}(x_{t+1:T}) = \sum_{i=1}^{N} y_{i:T}($$

generated by the a **particle smoother**, respectively.

filtering backward-simulator (FFBSi).

 $x_{t+1:t}; \hat{x}_{t+1:t|T}, P_{t+1:t|T}),$

using a standard Gauss-Newton solver which also com-

 $f_{\theta}(x_t | x_{t-1}) + \sum_{t=1}^{t} \log g_{\theta}(y_t | x_t)$

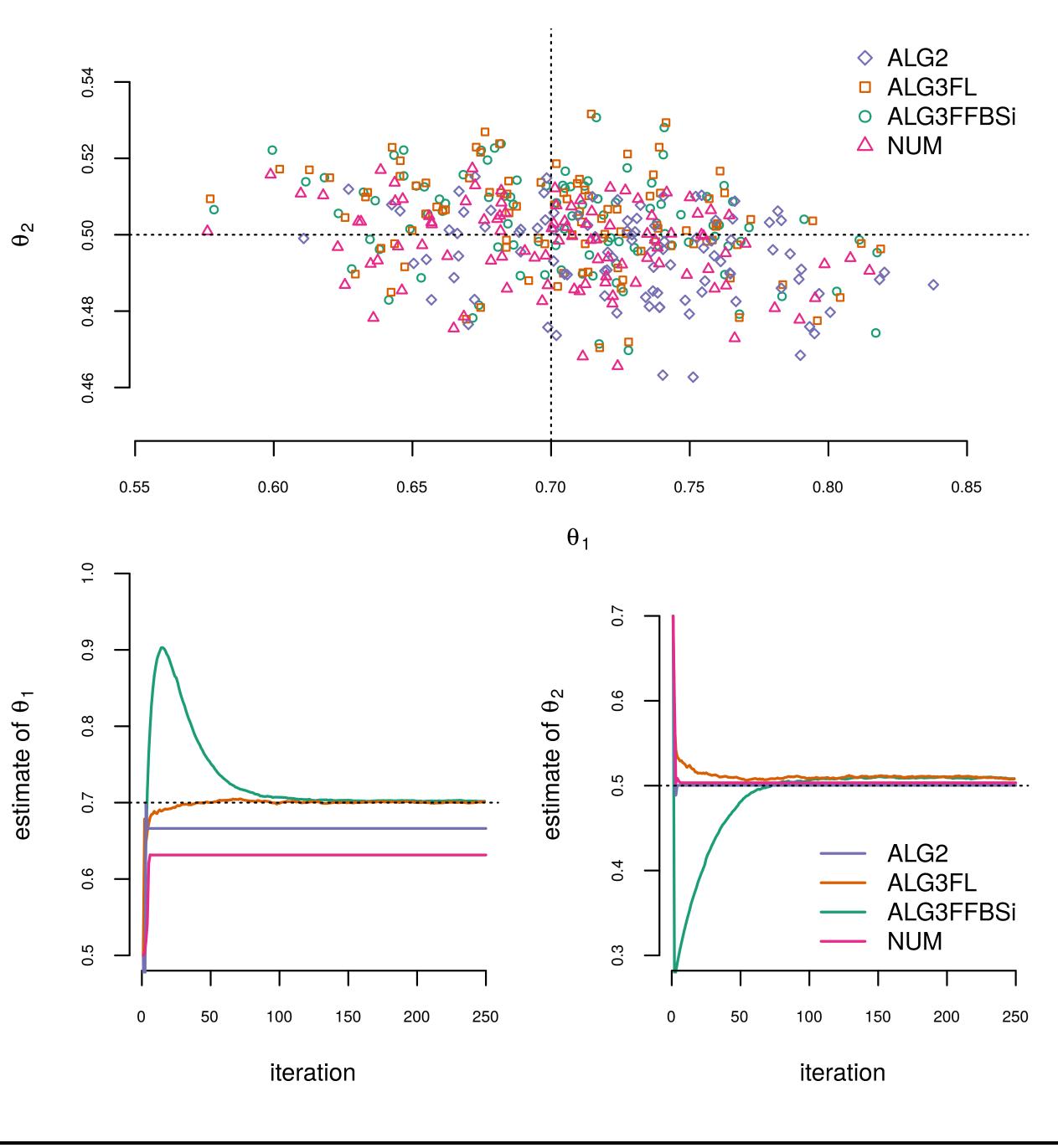
 $\int w_{t+1:t}^{(i)} \delta_{x_{t+1:t}^{(i)}} (\mathrm{d}x_{t+1:t}),$

where $x_{t+1}^{(i)}$ and $w_{t+1}^{(i)}$ denote the particles and their weights

We employ and compare two different particle smoothers: (i) the fast fixed-lag (FL) and (ii) the more accurate forward-

Numerical illustration

{0.7, 0.5} from the non-linear SSM given by and estimate θ using Algorithm 1.



Algorithm

Linearisation (ALG2) FL sampling (ALG3FL) FFBSi sampling (ALG3FFBS Numerical differentiation (

Paper and source code

Available at http://work.johandahlin.com/

LINKÖPING UNIVERSITY **Department of Electrical Engineering**

We simulate T = 1,000 observations with $\theta = \{\theta_1, \theta_2\} =$ $x_t | x_{t-1} \sim \mathcal{N}\left(x_t; \theta_1 \arctan(x_t), 1\right), \quad y_t | x_t \sim \mathcal{N}\left(y_t; \theta_2 x_t, 0.1^2\right)$

	Bias ($\cdot 10^{-4}$)		MSE ($\cdot 10^{-4}$)		Run time
	$\overline{ heta}_1$	θ_2	$\overline{ heta}_1$	θ_2	(sec/iter)
	284	-55	28	2	2.73
	53	35	24	2	5
BSi)	55	31	24	2	22
(NUM)	31	-27	23	1	0.19

