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Main ideas and contribution
⋄ The likelihood and its gradient and Hessian are intractable

for a general SSM.

⋄ Investigate two approximations to estimate the these quan-

tities based on linearisation and sampling.

⋄ Promising results for two synthetic test problems.

Maximum likelihood inference
The parameter estimate for a state space model (SSM),

xt+1 |xt ∼ fθ(xt+1 |xt), yt |xt ∼ gθ(yt |xt),

can be computed by

̂θ = argmax
θ∈Θ

ℓ(θ),

where ℓ(θ) = logp(y1∶T |θ) denotes the log-likelihood. This
can be implemented by the Newton update given by

θk = θk−1 − εkℋ −1 (θk−1) 𝒢 (θk−1) , (1)

at iteration k and where 𝒢 (θ) and ℋ (θ) denote the gradient
and Hessian of the log-likelihood, respectively.

Computing gradients and Hessians
We can compute 𝒢 (θ) using the Fisher identity

𝒢 (θk) =
T

∑
t=1

∫ ξθ(xt+1∶t)pθ(xt+1∶t |y1∶T )dxt+1∶t⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≜𝒢t(θ)

,

ξθ(xt+1∶t) ≜ ∇ log fθ(xt+1 |xt) + ∇ loggθ(yt |xt).

We can estimate ℋ (θ) by the Segal-Weinstein estimator

ℋ̂ (θ) = 1
T[𝒢 (θ)][𝒢 (θ)]

⊤
−

T

∑
t=1

[𝒢t(θ)][𝒢t(θ)]
⊤

,

using the gradient for each time step.

The intractability of the two-step smoothing distribution

pθ(xt+1∶t|y1∶T ) is handled by two different kinds of approx-

imations.

Algorithm 1: Newton method for ML parameter estimation
INPUTS: Initial parameter θ0, maximum no. iterations K .

OUTPUTS: ML parameter estimate ̂θ.
1: Set k = 0
2: while exit condition is not satisfied do

a: Run an algorithm to estimate ℓ̂(θk), 𝒢 (θk) and ℋ̂ (θk).
b: Determine εk using line search or a stochastic schedule.

c: Apply the Newton update (1) to obtain θk+1.

d: Set k = k + 1.
end while

3: Set ̂θML = θk.

Linearisation approximation
We approximate pθ(xt+1∶t |y1∶T ) by

pθ(xt+1∶t |y1∶T ) = 𝒩 (xt+1∶t; ̂xt+1∶t|T ,Pt+1∶t|T) ,

where the smoothed state estimate is given by

̂xt+1∶t|T = argmax
xt+1∶t

logpθ(x1∶T ,y1∶T ),

using a standard Gauss-Newton solver which also com-

putes Pt+1∶t|T . The complete data log-likelihood,

logpθ(x1∶T ,y1∶T ) = logpθ(x1)

+
T−1

∑
t=1

log fθ(xt |xt−1) +
T

∑
t=1

loggθ(yt |xt)

is approximated using an extended Kalman filter.

Sampling approximation
We approximate pθ(xt+1∶t |y1∶T ) by the empirical distribution

pθ(xt+1∶t |y1∶T ) =
N

∑
i=1

w
(i)
t+1∶tδx(i)

t+1∶t
(dxt+1∶t),

where x
(i)
t+1∶t andw

(i)
t+1∶t denote the particles and their weights

generated by the a particle smoother, respectively.

We employ and compare two different particle smoothers:

(i) the fast fixed-lag (FL) and (ii) the more accurate forward-

filtering backward-simulator (FFBSi).

Numerical illustration
We simulate T = 1, 000 observations with θ = {θ1, θ2} =
{0.7, 0.5} from the non-linear SSM given by

xt|xt−1 ∼ 𝒩 (xt; θ1 arctan(xt), 1), yt|xt ∼ 𝒩 (yt; θ2xt, 0.12
)

and estimate θ using Algorithm 1.
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Algorithm Bias (⋅10−4) MSE (⋅10−4) Run time

θ1 θ2 θ1 θ2 (sec/iter)

Linearisation (ALG2) 284 -55 28 2 2.73

FL sampling (ALG3FL) 53 35 24 2 5

FFBSi sampling (ALG3FFBSi) 55 31 24 2 22

Numerical differentiation (NUM) 31 -27 23 1 0.19

Paper and source code

Available at http://work.johandahlin.com/
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